
REAL-TIME OPTIMIZATION FOR ROBUST

STATE ESTIMATION AND CONTROL OF

LEGGED ROBOTS

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Mechanical Engineering

Shuo Yang

B.Eng., Computer Engineering,

Hong Kong University of Science and Technology

M.Phil., Electrical & Computer Engineering,

Hong Kong University of Science and Technology

Carnegie Mellon University

Pittsburgh, PA

August 2024

© Shuo Yang, 2024

All Rights Reserved

Acknowledgements

During my years at CMU, aside from conducting research, I also navigated the

upheaval of a global pandemic, celebrated the joyous birth of my son, and mourned

the loss of several cherished family members. This challenging PhD journey tested

my resilience in ways I never imagined, but it also transformed me. I emerged not

only as a more skilled and knowledgeable roboticist but also as a more compassionate

and resilient person. I would like to extend my heartfelt gratitude to everyone who

supported and contributed to this thesis.

First and foremost, I express my deepest appreciation to my advisors, Prof.

Zachary Manchester and Prof. Howie Choset, for their unwavering guidance, mentor-

ship, and support throughout my PhD journey. Your insightful advice and encour-

agement have been invaluable. I am also immensely grateful to my thesis committee

members, Prof. Aaron Johnson, Prof. Michael Posa, and Prof. Guanya Shi, for their

critical feedback and constructive suggestions that significantly enhanced the quality

of my research.

I extend my sincere thanks to the members of the CMU REx Lab, including

Aaron Bishop, Ben Bokser, Chiyen Lee, John Zhang, Swaminathan Gurumurthy,

Zixin Zhang, and Ibrahima Sory Sow, for their collaborative spirit and camaraderie.

Your diverse perspectives and expertise greatly enriched my research experience.

i

I am also grateful to the CMU Biorobotics Lab members, especially Prof. Matt

Travers, Dr. Lu Li, Ben Brown, Roshan Pradhan, Yizhu Gu, Chao Cao, and Yu

Chen, for their valuable insights and assistance. Working alongside such talented

individuals has been an inspiring experience.

A special mention goes to my collaborators, Prof. Mac Schwager, Dr. Simon

Le Cleac’h, and Dr. Taylor Howell from Stanford University, Prof. Frank Del-

laert, Gerry Chen, and Yetong Zhang from GeorgiaTech, Prof. Deva Ramanan and

Gengshan Yang from CMU, and Zhengyu Fu from ETH Zurich. Your expertise and

collaborative efforts have been instrumental in advancing my research.

I would like to acknowledge my industry mentors, Dr. Buck Babich from Nvidia

and Anand Swaminathan from Tesla, for providing me with practical insights and

guidance that bridged the gap between academic research and industry applications.

Additionally, I would like to thank Xingxing Wang, CEO of Unitree Robotics, for

providing robots to facilitate my research.

Finally, I would like to express my deepest gratitude to my wife, Lexie Ma, my

son, Mason Yang, and my other family members for their love, unwavering support,

patience, and encouragement throughout this journey. Without Lexie’s support, I

could not have made it through the devastating COVID lockdown period. Lexie

took on countless household routines and sacrificed her time to allow me to focus

on my research and studies. Her selflessness and dedication have been the bedrock

of my success. Thank you, Lexie, for believing in me and for standing by my side

through every challenge. My son Mason came into this world a few hours before an

RAL editor got back to me requesting paper revisions. With the luck and courage

Mason brought to me, I not only finished the paper revision in a few weeks and got

it published, but also went on to publish many more papers. His birth made me

a braver person, inspiring me to fight harder for my goals and persevere through

ii

challenges. Mason’s arrival infused my life with new energy and determination, and

I am grateful for the strength he has given me.

iii

Abstract

This thesis aims to provide methods and algorithms that enhance legged robot lo-

comotion capabilities in various aspects. In recent years, more legged robot solu-

tions have emerged and begun to assume real-world applications like construction

site inspection and law enforcement. As legged robots enter unstructured real-world

scenarios, they need improved motion control stability and more precise state estima-

tion. Through methodical investigations and experiments, this research contributes

several hardware and software innovations that demonstrate significantly improved

stability, mobility, and autonomy for legged robots.

On the control side, the thesis presents a legged robot hardware design incorpo-

rating two reaction wheels, which can be controlled alongside other joint motors in

a model predictive controller. The additional reaction wheels greatly enhance the

robot’s stability. To harness the power of reaction wheels in real-time control, we

explore the efficiency and flexibility of model predictive control. Due to the generic

nature of its underlying numerical optimization framework, model predictive control

can support different robot hardware designs within the same control framework.

On the state estimation side, this thesis develops several real-time odometry solu-

tions combining multiple inertial measurement units, joint encoders, contact sensors,

and cameras to achieve low-drift position estimation during long-term locomotion.

We first study two ways to model error sources in leg odometry to improve estima-

tion performance. Then, we develop two visual-inertial leg odometry solutions that

achieve state-of-the-art estimation accuracy. Along the way, we also systematically

study Kalman filtering and factor graph-based optimization, which are crucial tools

for general robot state estimation.

Additionally, a chapter of this thesis is dedicated to the connection between

iv

optimization-based state estimation and optimization-based control through the fac-

tor graph. The factor graph, commonly used in large-scale state estimation and

mapping, is a nuanced representation that explores sparsity in estimation problems.

This similar sparsity, due to the inherent Markov property of robots, also appears

in optimization-based trajectory generation and control. Thus, the graphical repre-

sentation can illuminate some difficult control problems that are challenging to solve

using conventional recursive methods.

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Statement . 5

1.3 Thesis Contributions & Overview . 5

2 Enhanced Model Predictive Control for Legged Robots With Re-

action Wheels 9

2.1 Introduction . 10

2.2 Related Work . 12

2.2.1 Model-based Control of Legged robots 13

2.2.2 Legged Robot Balance Strategies 14

2.2.3 Balancing Hardware . 14

2.3 Background . 15

2.3.1 Coordinate Frames & Rotation Representation 16

2.3.2 Centroidal MPC . 19

2.3.3 Gyrostat Dynamics . 24

2.4 Hardware Design . 26

2.5 Gyrostat MPC . 28

vi

2.5.1 Gyrostat Quadruped Dynamics 28

2.5.2 MPC Problem . 30

2.5.3 Angular Momentum Error Feedback 31

2.6 Experiments and Results . 32

2.6.1 Hardware/Simulation Setup 32

2.6.2 Locomotion Disturbance Rejection 33

2.6.3 Aerial Re-orientation . 35

2.6.4 Balance-Beam Walking . 35

2.7 Discussion . 37

3 Proprioceptive Odometry and Online Kinematic Calibration 39

3.1 Introduction . 40

3.2 Related Work . 43

3.2.1 Legged Robot State Estimation 43

3.2.2 Kinematics calibration . 44

3.3 Background . 46

3.3.1 Quaternion . 46

3.3.2 Quaternion Multiplicative Map 47

3.3.3 Quaternion & Rotation Matrix 48

3.3.4 Quaternion Exponential & Logarithm Maps 48

3.3.5 Small Angle Exp & Lop Maps 50

3.3.6 Quaternion Kinematics . 51

3.3.7 Rotation Matrix Exp & Log Map 52

3.3.8 Rotation Kinematics . 53

3.3.9 IMU-driven Error-state Kalman Filter 53

3.3.10 Leg Odometry Velocity . 56

vii

3.3.11 Standard Single-IMU Proprioceptive Odometry 57

3.4 Technical Approach . 59

3.4.1 Body Velocity Measurement Model 60

3.4.2 Kalman Filter Kinematics Calibration 61

3.4.3 Observability Analysis . 61

3.5 Experiments . 64

3.5.1 Simulation . 65

3.5.2 Error-state KF Hardware Experiment 67

3.6 Conclusion & Future Work . 72

3.7 Appendix . 73

4 Cerberus: Low-Drift Visual-Inertial-Leg Odometry For Agile Loco-

motion 74

4.1 Introduction . 75

4.2 Related Work . 77

4.3 Background . 79

4.3.1 An optimization view of state estimation 79

4.3.2 Estimating Additional Parameters 87

4.3.3 Visual-Inertial-Leg Odometry 89

4.3.4 Preintegration . 90

4.4 Kinematic Calibration In Preintegration 94

4.4.1 Contact Preintegration . 94

4.5 Experiments . 96

4.5.1 Parameter Estimation . 97

4.5.2 Indoor Experiments . 99

4.5.3 Outdoor Experiments . 102

viii

4.5.4 Robust Estimation . 105

4.6 Conclusions . 105

4.7 Appendix . 106

4.7.1 Leg-IMU Factor Derivation 106

4.7.2 Midpoint Method Discretize Dynamics 111

4.7.3 Error dynamics equation . 112

4.7.4 Residual Jacobian . 115

5 Multi-IMU Proprioceptive Odometry 119

5.1 Introduction . 120

5.2 Related Work . 122

5.3 Background . 122

5.3.1 Implicit Measurement Model & Quaternion Measurement . . . 123

5.4 Technical Approach . 124

5.4.1 EKF Process Model . 126

5.4.2 The Pivoting Contact Model 126

5.4.3 EKF Measurement Model . 128

5.4.4 Foot Contact and Slip Detection 130

5.4.5 Analytical Jacobian . 131

5.4.6 Observability Analysis . 133

5.4.7 Cramér-Rao Lower Bound . 135

5.5 Experiments . 135

5.5.1 Sensor Hardware Design . 136

5.5.2 Position Estimation Evaluation 137

5.5.3 Multi-IMU PO Orientation Estimation 138

5.5.4 Ablation Study . 140

ix

5.6 Conclusion . 143

5.7 Appendix . 143

5.7.1 Measurement Jacobian Terms 145

6 Multi-IMU Visual-Inertial-Leg Odometry 148

6.1 Cerberus 2.0 . 148

6.1.1 Software Architecture . 149

6.1.2 Loosely Coupled Leg Residual 150

6.1.3 Tightly Coupled Leg Residual 151

6.2 Implementation & Experiments . 153

6.2.1 Sensor Hardware . 154

6.2.2 Evaluation Metrics . 154

6.2.3 Cerberus 2.0 Evaluation . 156

6.3 Limitation & Future Work . 163

6.4 Conclusions . 166

7 Equality Constrained LQR With The Factor Graph 167

7.1 Motivation . 167

7.2 Related Work . 170

7.3 Preliminary . 173

7.4 Problem And Method . 176

7.4.1 Problem Formulation . 177

7.4.2 EC-LQR with Local Constraints 178

7.4.3 Computational Complexity Analysis 180

7.4.4 EC-LQR with Cross-time-step Constraints 180

7.5 Experiments . 182

x

7.5.1 Cost, Constraint Violation & Controller Comparison 183

7.5.2 Run Time Comparison . 184

7.5.3 Cross-time-step Constraints 185

7.6 Future Work . 187

7.7 Conclusions . 188

7.8 Appendix . 188

8 Conclusion & Future Work 193

8.1 Legged Control . 195

8.2 Legged Estimation . 195

8.3 Legged System Hardware Development 196

8.4 Legged System Software Development 197

8.5 Data Driven Methods . 197

xi

List of Figures

2-1 The Unitree A1 Quadruped walking on a six-centimeter-wide beam with the
assistance of our reaction wheel actuator system and gyrostat MPC controller. 11

2-2 Frames & Kinematic parameters of A1 robot. For each leg, its hip XY offsets
to robot body center are represented by 𝑜𝑥 and 𝑜𝑦. 𝑑, 𝑙𝑡 and 𝑙𝑐 are kinematic
offsets from hip to knee and knee to foot. 16

2-3 The graphical representation of a MPC problem 24
2-4 Proof-of-concept RWA system that mounts directly to the back of a Unitree

A1 robot. The system includes two permanent-magnet synchronous motors
that drive two high-inertia flywheels along the roll and pitch axes up to a
maximum speed of 1900 RPM. The system contains its own battery and is
capable of generating a maximum continuous torque of 5 Nm along each axis. 27

2-5 Roll error (top) and RWA torque responses (bottom) to a 650 N impulse
applied to the robot’s body y-axis at 𝑡 = 1.2 seconds. 34

2-6 Hardware impulse test where we provide an impulse force on the robot during
locomotion with a kick. 2-6a shows the robot performing stable trotting when
the impulse is applied. 2-6b shows the robot losing balance on the footholds
while maintaining a stable attitude as it eventually recovers from the impulse
in 2-6c. 35

2-7 A drop test sequence where the robot reorients itself with the torques from
the reaction wheels. The robot is initially positioned 50 cm off the ground
with a 0.6 radian roll error. The RWA controller is set to turn on immediately
after release to correct the attitude error. 36

2-8 Roll angle, roll RWA torque, and roll RWA velocity during the hardware
beam walking experiment. 38

xii

3-1 (a) Foot compression during locomotion changes calf length. (b) Body ve-
locity inferred from kinematics of the Leg 2 (front-left) with wrong calf length
(yellow) has larger error comparing to that using calibrated length (red). we
enlarge possible leg length error to make velocity error more perceptible.
The shaded green regions are periods when the leg not contacts the ground,
during which the LO velocity is meaningless. (c) Our method calibrates calf
length of the Leg 2 to around 0.21m (dash line) whatever the initial length
value is. 42

3-2 Left: The simulated robot and environment landmark locations. Right:
In the simulation we focus on analyzing how state is estimated within one
gait cycle, during which the body shifts a small distance, feet stand on the
ground without moving, and joints change configuration accordingly. 65

3-3 The calf length estimation result using simulation data. 𝜌 = [𝑙𝑐]. In all plots,
blue lines are estimated length. Red dash lines show the 3𝜎 uncertainty enve-
lope. Black dash lines indicate the ground truth length 0.21𝑚 for reference.
All estimations converge to ground truth quickly with final errors < 0.01𝑚. 66

3-4 (a) The calf length estimation for leg 1 during two calibration runs. The
green line comes from a filter that has the LUI noise term (3.60), while the
red line is generated by a filter does not have the term. Both filters have the
same other configurations. Black dash lines indicate time instances when the
robot changes behavior modes. During in-place trotting the red line drifts
significantly. (b) Velocity profile in each mode. The robot has small body
velocity hence small joint angle velocities when trotting. According to (3.59),
the observability matrix is very close to singular so the measurement update
is inaccurate. 68

3-5 Results of a hardware dataset run. (a) Calibrated calf lengths of each leg.
The black dash line indicates the mean value of all lengths (0.2113m). (b)
The velocity estimations using either fixed or calibrated length do not differ
much. The mean square error (MSE) of them from the ground truth velocity
are 0.0041 and 0.0038 respectively. (c) The KF with calibrated calf length
has much smaller position drift than the KF using fixed calf length. The
MSEs from the ground truth are 0.0018 and 0.0268 respectively. 69

4-1 On the A1 robot, the Cerberus algorithm has lower than 1% position es-
timation drift after traveling 450m on standard stadium track, better than
any baseline methods and better than any drift performance reported in lit-
erature using the same set of sensors. The ground truth is obtained using
dimensions of standard running track. 76

xiii

4-2 The graphical representation of a Kalman filter. The circles are estimation
states. The line segment with square represents the process dynamic model.
The unitary dot line is the prior information of the state distribution. And
the line segment with square is the measurement model. This graph follows
the convention of standard factor graphs [36], where all the circles are “nodes”
and line segments are “factors”. 83

4-3 Top (a): Marginalize 𝑥𝑘−1 out of the joint distribution 𝑝(𝑥𝑘−1, 𝑥𝑘) to get the
posterior distribution of 𝑥𝑘 alone. The green arrow represents the Bayes net
after eliminating variable 𝑥𝑘−1 from the factor graph. The new red unitary
factor is a new factor results from the elimination process and represents the
posterior distribution. Bottom (b): Add the next state and construct a
new Kalman filter problem. 84

4-4 Top (a): The factor graph formulation of a SWE. Middle (b): Marginal-
ized the last state 𝑥𝑘−𝑀 . Bottom (c): Add a next state 𝑥𝑘+1. 86

4-5 After receiving sensor data at time 𝑡𝑟, we search in the sliding window back-
ward to find states close to 𝑡𝑠 = 𝑡𝑟 − 𝑡𝑑 (𝑥𝑘−2 and 𝑥𝑘−1), then we do a cu-
bic spline interpolation between �̄�𝑘−2 and �̄�𝑘−1 to get an interpolated state
𝑥interp(𝑡𝑑, �̄�𝑘−2, �̄�𝑘−1). 88

4-6 The factor graph representation of a VILO. The green factors are related to
camera images, blue factors are formulated by IMU sensor data, red factors
are from leg kinematic parameters . 90

4-7 Preintergation of IMU or joint measurements. The estimator adds a new
state whenever a new camera image arrives. Within the time interval Δ𝑡
between two consecutive states, there are multiple other sensor measurements
with a sub-interval 𝛿𝑡. We use 𝑘 to refer to estimator time indices and 𝑖
to indicate a measurement within Δ𝑡. These measurements are integrated
according to equations (4.12), (4.13), (4.11), and (4.20), forming a motion
constraint on states as in equation (4.14). The VILO Problem (4.10) involves
such motion constraints and other constraints due to visual observations over
a window of states. 92

4-8 The calf length calibration results using Cerberus. For each of the four
standing-up datasets, we run the estimator three times with different random
initial calf lengths. Each solid curve shows the estimated calf length of each
run. The horizontal dash reference line indicates 0.215m, the mean value of
estimations between 6s to 11s. 98

4-9 Left: simulated robot trajectory and sensor data. Right: If the position
sensor has no delay, the normal KF can estimate the robot trajectory very
precisely (red). However, if the position sensor data contains delays, the KF
estimation result is very bad (yellow). Even if we use outlier rejection in KF
(purple), the result is still not good compared to that has no delay. 99

xiv

4-10 We compare different estimators’ performance using the root mean square er-
ror (RMSE) by comparing the estimated position trajectory with the ground
truth. Left and right figures show two different types of robot motion tra-
jectories. 100

4-11 Left: when the sensor delay time is constant. The estimation converges to
the correct time (0.2s). Results from three different runs with different sensor
data and initial delay time values are shown. Right: if the sensor delay time
is changing, the estimation keep track of the growing trend of the time. Also,
the results of three runs are shown. 100

4-12 Comparing with the mocap ground truth, VILO with calib has smaller drift
on all directions. The final drift of the VINS trajectory (red) is 1.73% while
the drift of the VILO w/o calib trajectory (yellow) is 1.25% and that of VILO
with calib (purple) is 1.13%. 101

4-13 Linear velocity of the robot body on X,Y, and Z directions. 102
4-14 During the recording of the “Campus” dataset, the Go 1 robot ran 345 m

with an average speed of 1 m/s in indoor and outdoor environments. VINS
fails, so no result is shown. VILO with calibration has the smallest final
position drift after returning to the starting point (red star). 104

4-15 Dataset “Street” algorithm run visualization and the estimation result. GPS
position reference is collected using iPhone App “Gaia GPS”. The final drift
of VILO with calib is 2.22m (0.85% after 260m travel) comparing to 1.84m
of VILO w/o calib. 105

5-1 The point foot has obvious rolling contact during stance. 120
5-2 Left: A Unitree Go1 robot equipped with foot IMUs. Right: Position esti-

mates while walking over a 160m loop trajectory: Standard Proprioceptive
Odometry (PO) has an average XY position drift of 18.4%, while our Multi-
IMU PO solution achieves 2.59% average drift, a significant improvement
achieved with minimal additional hardware and computational cost. 121

5-3 Left: Illustration of the pivoting model for a foot that has rolling contact
with the ground. The estimated foot velocity �̇�𝑘 depends on 𝜔 and 𝑑, as
defined in (5.8) and (5.9). Right: Comparison of ground-truth foot velocity
captured with a motion capture system to estimation using the pivoting
model (5.12). When the foot has non-zero rolling velocity during contacts
(shaded regions), the pivoting model agrees with the ground truth velocity
very well while the zero-velocity model treats foot velocity as zero. 128

5-4 The estimated XY position trajectory comparison of the standard PO and
MIPO. The total trajectory length is 10.5m. The standard PO estimation
drifts 11.39% on average, and its maximum RSE is 1.04m. While the result
of MIPO has 2.31% average drift and 0.25m maximum RSE. 136

xv

5-5 Left: The CAD design of foot IMU mount. The offset from IMU to foot
center is measured from the CAD drawing. Right: The IMU installation on
one foot of a Unitree Go1 robot. 137

5-6 Top: XY position trajectory estimation results of the standard PO, MIPO,
and three MIPO variants used in the ablation study. The total trajectory
length is 21.5m. Bottom: The drift percentages over time of all meth-
ods. MIPO has the smallest (4.21%), followed by MIPO-F (7.75%), MIPO-C
(11.3%), MIPO-P (12.04%), and the standard PO (16.87%). 139

5-7 To show how different orientation estimation methods perform differently
during fast in-place rotation, we compare the user input yaw rate command
to the robot (Top) and estimated body pitch (Middle) and roll angles
(Bottom). Positive command lets the robot spin counterclockwise. The
faster the robot spins and the more abrupt the angular acceleration is, the
more the estimated orientation will be wrong. Compared with the MoCap
ground truth, average pitch and roll angular estimation errors (in deg) of
different methods are: Complementary filter (0.019, 0.040), Standard PO
(0.0185, 0.025), Multi-IMU PO (0.015, 0.018). 141

5-8 Plots of the element value corresponding to X position in the CRLB matrix
for standard PO and Multi-IMU PO. From the same initial covariance value,
both filters’ CRLB first decreases and then increases gradually. The CRLB
of Multi-IMU PO is much smaller than that of standard PO. 142

6-1 The software architecture of Cerberus 2.0. 150
6-2 A comparison of several PO or vision-based baseline methods and Cerberus2

variants on two indoor data sequences. In the left figure, the robot uses
the standing trot gait, 0.40s gait time, and 0.2m/s speed target. The right
figure is the result of the robot’s moves using the trot gait, 0.44s gait time,
and 0.5𝑚/𝑠 speed. The average drifts of all methods in these two runs
are Standard PO - 7.56%, Multi-IMU PO - 1.86%, VINS-Fusion - 2.43%,
Cerberus - 1.65%, Cerberus2-L 1.15%, and Cerberus2-T 1.01%. 155

6-3 Top: Leg contact schedules of each gait type. Black represents time periods
where the leg is in contact with the ground. Bottom: Box plots of average
drifts of different methods. Results are categorized by gait types. For each
type, we show the drift statistics from all experiment runs for each individual
method. 158

6-4 Box plots for estimation results of different gait frequencies. 159
6-5 Box plots for estimation results of different movement speeds. 159
6-6 Different terrains during outdoor experiments. 161
6-7 Estimation results of four outdoor runs. The average drift percentages of

each method in each run are summarized in Table 6.1. 164

xvi

6-8 On a challenging hiking trail, Cerberus2-L (red) achieves lower than 10%
drift performance while all other methods either fail or have drift larger than
10%. The estimation result of Cerberus2-L agrees with the ground truth
(blue) and underlying satellite image very well. The map can be viewed online.165

6-9 In an over 500m experiment run, a Unitree Go1 robot travels through a
parking garage over various terrain types. The proposed Cerberus 2.0 algo-
rithm demonstrates great estimation robustness and accuracy. Except for
baseline method Cerberus and the Cerberus2-L method, all other methods
break along the way. The ground truth trajectory is also wrong inside the
garage due to weak GPS signals. After the robot exited the garage, the GPS
was restored. Cerberus2-L has < 0.5% drift even after traveling for long
distances with indoor/outdoor switching. The map can be viewed online. . . 165

7-1 The factor graph representation of an Equality Constrained Linear Quadratic Reg-
ular (EC-LQR) problem. Circles with letters are states or controls. Filled squares
and circles represent objectives and constraints that involve the state or controls to
which they are connected. The red square represents a cross-time-step constraint. . 169

7-2 Factor graph of a standard LQR problem with trajectory length 𝑇 = 2. 171
7-3 Two variable eliminations for the LQR problem. Each sub-figure consists of three

rows showing three equivalent representations: the factor graph (top), constrained
optimization (middle), and modified Gram-Schmidt process on [𝐴𝑖|𝑏𝑖] (bottom).
The arrows in the factor graphs show variable dependencies. The thin horizontal
arrows separate cases before and after elimination. Terms and symbols in the same
color correspond to the color-coded variable elimination steps in Section 7.3. Note
that the matrix factorization representation consists of the weight vector, 𝑊𝑖, next
to the sub-matrix [𝐴𝑖|𝑏𝑖]. 172

7-4 Two elimination steps for EC-LQR with local constraints. This figure has the same
layout as Figure 7-3. 179

7-5 Example cross-time-step constraint in a factor graph. The bottom figure is a Bayes
net showing variable dependencies after VE. 181

7-6 Optimal trajectory, cost, and constraint violation comparison of three methods for
Problem 7.3. For each method we plot the three dimensions of the state 𝑥. All
methods produce the same result. 183

7-7 The plots of feedback control gain matrices from Baseline Method 2 and ours (we
omit Baseline 1 because its result is identical to Baseline 2). Each curve represents
one element in 𝐾𝑡 or 𝑘𝑡. 184

xvii

https://www.google.com/maps/d/u/0/edit?mid=1ek1hU02ADSrNKmgSpMtXkDp6IPvOf6E&ll=40.41327556703216%2C-79.95071363609686&z=19
https://www.google.com/maps/d/u/0/edit?mid=1bp65QUnbff6kFFlv7H4fXRPqdb5n6ps&ll=40.44345689147336%2C-79.94090941164713&z=19

7-8 The state trajectories solving Problem 7.4 using Baseline method 2 (left), Baseline
method 3 (middle), and our proposed method (right) with control sequence/policies
applied to the original problem (top) and after perturbing the initial state (bottom).
All methods generate the same trajectory to the initial problem, but only ours gives
a policy which generates the optimal trajectory for the perturbed problem. “Cost”
and “Constr” denote the total objective cost and constraint violation, respectively. 187

xviii

List of Tables

3.1 The table shows the average peformance metrics of ten datasets and the
improvement of using calibrated length. Max pos drift is the maximum
deviation of estimated position from the ground truth. Final pos drift is the
position deviation at the end of the traveling trajectory. 72

4.1 VILO Sensor List . 94
4.2 Hardware Experiment Final Drifts Comparison 103

5.1 Performance Summary . 135

6.1 The drift value of all outdoor experiment runs. Each column lists the results
of one run. Across all results, Multi-IMU PO achieves the lowest drift val-
ues, while Cerberus2-L has comparable or better performance and improved
robustness. 164

xix

Chapter 1

Introduction

Legged robots represent a critical frontier in robotics due to their potential to nav-

igate complex and uneven terrains where wheeled robots falter. Their ability to

mimic the mobility of biological organisms allows them to operate in environments

such as disaster sites, rugged outdoor landscapes, and other scenarios that are chal-

lenging for traditional robots. This thesis presents a comprehensive exploration of

novel algorithms and hardware designs aimed at enhancing the locomotion and state

estimation capabilities of legged robots. Although robotic systems with any number

of limbs can be called "legged" robots, in modern times, the term primarily refers to

quadrupeds (four-legged robots) and hexapods (six-legged robots). Robots with more

than six legs are rare, while two-legged robots have their own special terms: biped (if

the robot only has a pelvis and a pair of legs) and humanoid (robots that resemble

the human shape). In this thesis, we mainly use quadrupeds to discuss system and

algorithm designs, but our work can be generalized to robots with any number of

legs.

Our research pivots around the synergy between advanced control theories and

1

state estimation techniques, underlined by the common thread of numerical opti-

mization algorithms. By leveraging these advanced techniques, we have made several

contributions that enable legged robots to achieve better balance, stability, and more

precise state estimation, especially long-term position estimation.

In this chapter, we give an overview of the motivation, contributions, and orga-

nization of this thesis. The subsequent chapters will delve into the detailed develop-

ment of these novel algorithms and hardware designs, demonstrating their effective-

ness through rigorous analysis and real-world experiments.

1.1 Motivation

For decades, legged robots have been believed to surpass wheeled robots in terms of

mobility and adaptability. In recent years, rapid developments in hardware compo-

nents and embedded computing have drawn increasing attention to legged robots

from both academia and industry. Numerous advanced legged robot platforms

are now available, such as Boston Dynamics’ Spot [39], ANYmal [59], and Uni-

tree A1 [148]. These robots are capable of performing various tasks in challenging

environments, such as climbing stairs, opening doors, and traversing rough terrains.

The basic designs of legged robots are becoming mature, with robots converging on

a few optimal configurations. As these robots transition from the lab to real-world

applications, it is crucial to continue improving their performance. This includes not

only enhancing existing capabilities but also enabling new functionalities whenever

possible. There are two important aspects to this effort.

On the control side, although most legged robots have converged to a 12-motor

configuration with point feet, there is still room for hardware innovation to improve

stability. The literature already features some excellent hardware innovations that

2

achieve this goal by adding spines [129], wheels [11], or tails [111] to legged sys-

tems. We aim to provide an alternative perspective in this direction, exploring novel

hardware designs that can further enhance the stability and performance of legged

robots.

At a high level, our contributions follow a specific design philosophy: we mimic

human and animal shapes but do not constrain ourselves to them. Instead, we focus

on identifying fundamental limitations and error sources and use the most compact

solutions to address these issues, even if the solutions do not resemble animal shapes.

Another important topic is state estimation. As some legged robots have already

entered real-world applications, various sensors have been employed for state esti-

mation and mapping. Legged robots require precise estimation of physical states,

such as body position and orientation (pose), as well as body velocity, to perform

balancing control [14] and path planning [109] on challenging terrains. In many sce-

narios, robots must travel hundreds of meters autonomously [147], performing state

estimation solely using onboard sensors, as external sensors like GPS and motion-

capture systems are often unavailable. We are interested in identifying the most

compact sensor solution that can achieve long-term position estimation. For con-

trol purposes, it is essential to obtain accurate orientation and velocity estimations.

However, if we consider legged robots as measurement instruments, achieving precise

position estimation becomes equally important.

An essential building block for state estimation in these cases is odometry. An

odometer measures the robot’s body velocity or incremental body position displace-

ment, the integration of which results in global position estimation. Due to inevitable

measurement errors, position estimation will drift unless an external sensor provides

absolute global position measurements. Since global information may not always

be accessible, reducing odometry noise is crucial for overall state estimation perfor-

3

mance.

Although various odometry solutions have been developed for other mobile robots,

legged robot odometry presents unique challenges and advantages that have yet to be

systematically studied in the literature. Compared to wheels on conventional mobile

robots, legs are less likely to slip even on uneven terrain, but using legs to infer robot

body motion requires more careful modeling efforts. Existing platform-agnostic solu-

tions for GPS-denied environments, such as lidar odometry [167] and Visual-Inertial

Odometry (VIO)[73], are often too expensive and heavy for lightweight legged robots.

VIO works well for drones and autonomous vehicles where motion is smooth and

continuous[118]. But legged robots must deal with uneven terrain, high-frequency

impacts, and contact dynamics, naively migrating VIO to legged robots does not

work well [161, 165].

Some papers have studied the use of additional sensors on legged robots to im-

prove odometry performance [56, 76, 92, 158], but there has been no systematic

discussion of the factors affecting odometry accuracy. Part of the reason is that not

a lot of existing applications require long-term odometry, where legged robots are

mostly operated by humans. Even when autonomous, these robots are designed to

move slowly and carefully, making bulky sensors and additional general Simultane-

ous Localization and Mapping (SLAM)[145] mechanisms sufficient[147]. However,

these solutions are unsuitable for legged robots with limited payload capacity and

onboard resources that need to move quickly in time-critical missions. A low-drift

odometry solution leveraging only lightweight onboard sensors that perform well dur-

ing fast and agile locomotion is needed. One of the core contributions of this thesis

is a systematic study of odometry solutions with different hardware and software

formulations and how control-related factors affect state estimation performance.

Additionally, because numerical optimization is the foundation for both control

4

and state estimation, mathematical tools developed for one can be used in the other.

Thus, exploring these connections in legged systems can illuminate some fundamental

aspects of control and state estimation research.

1.2 Thesis Statement

This thesis explores the enhancement of legged robot locomotion and state estima-

tion through innovative algorithms and hardware designs. Adhering to a flexible

design philosophy, we draw inspiration from human and animal shapes without be-

ing constrained by them, focusing on using compact and effective solutions to address

fundamental limitations and error sources in the system. This approach enhances

robots’ existing capabilities and enables new functionalities.

1.3 Thesis Contributions & Overview

The thesis statements are supported by not only new algorithms but also new hard-

ware designs. Each chapter of this thesis contains contributions to either control or

state estimation research. These contributions are not merely isolated instances of

academic exploration; rather, they collectively forge a cohesive narrative that rein-

forces and validates the thesis’s central statements.

Chapter 2 This chapter focuses on control. We propose a novel quadruped hardware

system designed to enhance the balancing capabilities of legged robots.

Using the Model Predictive Control (MPC) framework, we control this

hardware system and demonstrate its significantly improved stability in

real-world experiments. The chapter also provides a detailed explanation

5

of MPC, with a particular emphasis on sparsity in MPC, which is crucial

for efficient MPC implementation and closely related to factor graph-

based state estimation. The contents of this chapter have been published

in:

Lee, Chi-Yen*, Shuo Yang*, Benjamin Bokser, and Zachary

Manchester. "Enhanced Balance for Legged Robots Using Reac-

tion Wheels." In 2023 IEEE International Conference on Robotics

and Automation (ICRA), pp. 9980-9987. IEEE, 2023.

Chapter 3 This chapter focuses on state estimation. Building on conventional legged

robot proprioceptive odometry (PO), we identify robot kinematic pa-

rameters as a major error source and propose a novel online calibration

method to estimate these parameters. This method is validated through

simulation and hardware experiments. The chapter also includes an ob-

servability analysis of the calibration problem, providing a general tool

for analyzing the observability of nonlinear systems. The contents of this

chapter have been published in:

Yang, Shuo, Howie Choset, and Zachary Manchester. "Online

kinematic calibration for legged robots." IEEE Robotics and Au-

tomation Letters 7, no. 3 (2022): 8178-8185.

Chapter 4 This chapter focuses on state estimation. It presents Cerberus, a visual-

inertial-leg odometry solution that achieves one of the best long-term

position estimation performances on legged robots. Cerberus employs

a sliding window factor graph formulation to perform real-time sensor

6

fusion of visual, inertial, and leg odometry measurements. Additionally,

online kinematics calibration is used to improve estimation accuracy. The

contents of this chapter have been published in:

Yang, Shuo, Zixin Zhang, Zhengyu Fu, and Zachary Manchester.

"Cerberus: Low-drift visual-inertial-leg odometry for agile loco-

motion." In 2023 IEEE International Conference on Robotics and

Automation (ICRA), pp. 4193-4199. IEEE, 2023.

Chapter 5 This chapter focuses on state estimation. We propose a novel hardware

sensing solution for legged robots that leverages IMUs on the robot’s

feet to augment standard proprioceptive odometry (PO). The Multi-IMU

Proprioceptive Odometry (MIPO) system is developed to harness sensor

data from multiple IMUs. By using foot IMUs, MIPO eliminates a fun-

damental limitation of standard PO, achieving better velocity estimation

accuracy. This improvement is validated through theoretical analysis,

simulations, and hardware experiments. The contents of this chapter

have been published in:

Yang, Shuo, Zixin Zhang, Benjamin Bokser, and Zachary Manch-

ester. "Multi-IMU Proprioceptive Odometry for Legged Robots."

In 2023 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 774-779. IEEE, 2023.

Chapter 6 This chapter focuses on state estimation but also explores connections to

control. Building on the work presented in Chapters 4 and 5, we pro-

pose combining multiple IMUs, visual sensors, and leg kinematic sensors

7

into the same odometry framework to achieve better long-term position

estimation accuracy. This approach significantly upgrades the Cerberus

algorithm, making it almost an order of magnitude more accurate than

its previous version. Moreover, we systematically study how different

control parameters, such as locomotion gait frequency, gait type, and

commanded linear body movement speed, affect state estimation accu-

racy. This provides valuable insights into the co-design of control and

estimation systems for legged robots.

Chapter 7 This chapter focuses on control but also has connections to state esti-

mation. The core idea revolves around the factor graph, which has long

been considered a state estimation tool. Common trajectory optimization

methods, such as the Linear Quadratic Regulator (LQR), are essentially

different forms of numerical optimization. Therefore, the factor graph can

be used to solve control problems that are commonly known to be very

difficult to address. The contents of this chapter have been published in:

Yang, Shuo, Gerry Chen, Yetong Zhang, Howie Choset, and Frank

Dellaert. "Equality constrained linear optimal control with factor

graphs." In 2021 IEEE International Conference on Robotics and

Automation (ICRA), pp. 9717-9723. IEEE, 2021.

8

Chapter 2

Enhanced Model Predictive Control

for Legged Robots With Reaction

Wheels

This chapter presents a system development work that uses novel hardware in-

novations to improve legged robot control performance. We introduce a reaction

wheel system that enhances the balancing capabilities and stability of quadrupedal

robots during challenging locomotion tasks. Inspired by both the standard cen-

troidal dynamics model common in legged robotics and models of spacecraft used

in the aerospace community, we model the coupled quadruped-reaction-wheel sys-

tem as a gyrostat and simplify the dynamics to formulate the problem as a linear

discrete-time trajectory optimization problem. Modifications are made to a standard

centroidal model-predictive control (MPC) algorithm to solve for both stance foot

ground reaction forces and reaction wheel torques simultaneously. The MPC prob-

lem is posed as a quadratic program and solved online at 1000 Hz. We demonstrate

9

improved attitude stabilization both in simulation and on hardware compared to a

quadruped without reaction wheels, and perform a challenging traversal of a nar-

row balance beam that would be impossible for a standard quadruped. A video of

our experiments is available online1. It is a perfect example that reflects our design

philosophy: the reaction wheels do not mimic human or animal shapes directly, but

they fundamentally improve the system’s controllability. Moreover, Model Predic-

tive Control (MPC) is an important application of numerical optimization in legged

robots. It has close connections to all subsequent chapters.

2.1 Introduction

The core design of quadrupedal robots has largely converged over the past decade:

high-performance contemporary designs share many similarities, including a rigid

torso, four three-degree-of-freedom (3-DOF) legs, and a rounded “point foot” at the

end of each leg. The most popular locomotion gait is the trotting gait, where a pair

of diagonal feet switch contact states together (the gait pattern can be seen in Figure

??). While simple and effective, during locomotion, only two feet are in contact with

the ground at any given time, making the robot’s orientation around the supporting

line connecting the contact feet uncontrollable [60]. Therefore, large body orientation

errors can only be eliminated by frequently switching stance feet [14, 60], making

a quadrupedal robot especially vulnerable to impacts and disturbances during the

two-foot standing phase.

In contrast, terrestrial animals use a multitude of strategies to perform inertial

stabilization during dynamic movements: Humans heavily regulate their angular mo-

mentum through arm movements during locomotion [115], cheetahs use their tails
1https://youtu.be/UroSaUg3Q6k

10

https://youtu.be/UroSaUg3Q6k

Figure 2-1: The Unitree A1 Quadruped walking on a six-centimeter-wide beam with
the assistance of our reaction wheel actuator system and gyrostat MPC controller.

during high-speed chases and turning maneuvers [114], and falling cats adjust their

attitude during falls using their highly flexible spines [100]. To improve the balanc-

ing and stabilization capabilities of quadrupedal robots, it is clear that we need to

augment the current state-of-the-art quadruped design to enhance the robot’s ability

for inertial stabilization.

To bring similar capabilities to quadrupedal robots with a minimum of additional

hardware and control complexity, with our design philosophy in mind, we take in-

spiration from the aerospace industry: Reaction wheel actuators (RWAs) are widely

used on satellites to perform attitude control [45]. We develop a proof-of-concept

RWA module that can be attached to the back of a standard Unitree A1 robot to

provide additional angular momentum control. The 4.3-kg module, shown in Figure

2-1, is compact and has high control bandwidth.

11

RWAs offer a number of advantages over other mechanical appendages such as

tails or multi-link limbs: Controllers do not need to consider the non-trivial collision-

avoidance problem between appendages and the robot chassis. And, perhaps most

importantly, RWAs lead to linearized dynamics that can be easily integrated into

the standard centroidal model commonly used in MPC controllers for quadrupeds

[37, 45]. One major drawback of RWAs is their reliance on wheel acceleration to

provide body torque control, which can lead to saturation of rotor speed. In this

chapter, we show that this limitation can be handled effectively by adding a set of

linear inequality constraints in the MPC formulation, and a linear feedback term on

reaction wheel momentum.

In this chapter, we modify the centroidal quadruped dynamics such that it cap-

tures the dynamics of the RWA system, and we use the new dynamics equation in the

classic quadruped MPC framework to control all joint torques and wheel torques at

the same time so that the robot orientation stays controllable during a two-leg stance

phase. The method, which we call Gyrostat MPC, is validated in both simulation

and hardware.

The chapter proceeds as follows: Section 2.2 discusses previous works related

to inertial appendages and reaction wheels; Section 2.3 talks about the background

ideas that we build upon in this chapter; Section 2.4 presents the mechanical design

of the RWA module; Section 2.5 introduces the gyrostat MPC algorithm; and Section

2.6 presents our simulated and hardware results.

2.2 Related Work

In this section, we discuss some previous research results on quadruped balance

control, related works on inertial appendages, and existing works on integrating

12

RWAs into legged robot locomotion.

2.2.1 Model-based Control of Legged robots

The classical optimal control framework finds control law of a given system by min-

imizing a optimality criterion. This framework can be realized using numerical opti-

mization [10] as constrained nonlinear programs. The cost functions of such programs

typically includes terms for energy efficiency, stability, and adherence to a desired

trajectory or behavior. And the robot system dynamics are encoded as equality

or inequality constraints [34, 74]. The MPC usually refers to the optimal control

method of solving robot action from the current time to a future time after a certain

“time horizon” as an optimization problem, and then send the first action to the

robot as control. This is in contrast to iterative LQR (iLQR) [88] and differential

dynamic programming (DDP) [142] where similar optimization problems are formu-

lated and not only action but also a feedback control law is solved. Although MPC

does not explicitly solves a feedback law, it is more flexible because different task

constraints can be naturally formulated as constraints and the solution methods stay

the same. In contrast, iLQR and DDP need to carefully consider constraints when

solving the Ricatti equation [81, 143]. The expressiveness of MPC enables it to find

state and action trajectories for very complicated systems even with discrete contact

switches [96, 116].

A majority of recent MPC works address computation efficiency [37, 43]. The

main idea is to leverage the inherent sparsity of MPC problem - each robot state

along the solution trajectory is only affected by the two adjacent states. Therefore

the matrix representation of the constraint of a MPC problem with long horizon

is nearly block tridiagonal. So the problem sparsity can lead to efficient solution

13

methods that only grow linearly with horizon length [37, 154].

2.2.2 Legged Robot Balance Strategies

The classical MPC for legged robots to perform body balancing using only ground

reaction forces [13, 14, 30, 37, 105]. While these approaches have demonstrated in-

credible dynamic hardware behavior (including running, galloping, and jumping),

quasi-static motion such as balancing in a highly under-actuated pose remains diffi-

cult. In [29], the authors balance a quadruped in a two-leg under-actuated pose. In

[48], the authors demonstrate the same behavior with careful modeling of the robot

in the balance pose and demonstrate narrow-beam walking in simulation. However,

to the best of our knowledge, no hardware demonstration of continuous locomo-

tion on a narrow beam — where the support polygon is nearly empty — has been

achieved before. In addition to the control problem itself, hardware challenges such

as deformable feet make this difficult to realize in practice as we going to show in

Chapter 3.

2.2.3 Balancing Hardware

Inertial appendages have been widely explored for improving the stability of legged

robots. A spine-like mechanism [129] can offer more control inputs to the system, but

it is very complicated and difficult to manufacture. Tails, which can allow robots to

stabilize their attitude in mid-air without ground contact, have received significant

attention [89]. In [68, 114], the authors designed tails for hexapod and wheeled

robots to perform aerial reorientation maneuvers. In [110], the authors leveraged

the aerodynamics of tails. In [166], the authors introduced a sequential distributed

MPC framework to stabilize legged robot locomotion with tails in simulation. In

14

comparison to RWAs, tails can be more lightweight and energetically efficient [89].

However, RWAs offer simpler linearized dynamics and, unlike tail-based systems, do

not encounter self collisions or joint limits.

There are numerous examples of adding RWAs to robots. Arguably one of the

most well-known examples is the Cubli robot [46], which solely uses reaction wheels

to achieve a variety of dynamic behaviors. RWAs have also been installed on bipeds

to improve walking efficiency [21, 22] and to stabilize pitch during high-speed running

[113]. On quadrupeds, RWAs have been studied for potential use in microgravity on

the moon to perform attitude stabilization during jumping [79]. Most prior work

on RWAs use simple proportional-derivative (PD) control laws to perform attitude

stabilization, and do not reason about cross-coupling between the leg actuators and

RWAs. In contrast, we present a new convex MPC algorithm that simultaneously

optimizes both leg and RWA control inputs.

2.3 Background

We now review some concepts from legged robot contorl and state estimation with

a set of notations that will be used throughout the entire thesis.

In general, we use lowercase letters for scalars and frame abbreviations, boldface

lowercase letters for vectors, and upper case letters for matrices and vector sets.

The operation [𝑎; 𝑏; 𝑐] vertically concatenates elements 𝑎, 𝑏 and 𝑐 with the same type

(scalar, vector, or matrix). The operator ⌊𝑣⌋× converts a vector 𝑣 = [𝑣1; 𝑣2; 𝑣3] ∈ R3

15

world(w)

robot(r)

IMU(b)

camera(c)

foot(f)

robot(r)

Figure 2-2: Frames & Kinematic parameters of A1 robot. For each leg, its hip XY
offsets to robot body center are represented by 𝑜𝑥 and 𝑜𝑦. 𝑑, 𝑙𝑡 and 𝑙𝑐 are kinematic
offsets from hip to knee and knee to foot.

into the skew-symmetric “cross-product matrix,”

⌊𝑣⌋× =

⎡⎢⎢⎢⎣
0 −𝑣3 𝑣2

𝑣3 0 −𝑣1
−𝑣2 𝑣1 0

⎤⎥⎥⎥⎦ , (2.1)

such that 𝑣 × 𝑥 = ⌊𝑣⌋×𝑥. �̇� is the time derivative of 𝑎.

2.3.1 Coordinate Frames & Rotation Representation

Important coordinate frames are shown in Fig. 2-2. To simplify discussion, we

assume that the IMU frame and the robot’s body frame coincide. We use 𝑝 to

denote the translation vector and 𝑅 to denote the coordinate transformation matrix

from the robot’s body frame to the world frame. The matrix 𝑅 can also be viewed as

a representation of robot orientation, which is an element of special orthogonal group

16

𝑆𝑂(3) [91, 103]. Where necessary, we use superscripts and subscripts to explicitly

indicate the frames associated with rotation matrices and vectors, so 𝑅𝑎
𝑏 · 𝑝𝑏 means

the matrix transforms a vector 𝑝𝑏 represented in coordinate frame 𝑏 into coordinate

frame 𝑎 [103]. For brevity, if frame 𝑏 is time-varying, and the context of frame

association is clear, we write 𝑅𝑘 instead of 𝑅𝑤
𝑏(𝑘) to indicate the rotation matrix

is also time dependent. Similarly, 𝑝𝑘 defines a time-varying vector, it can also be

viewed as the origin vector of frame 𝑏𝑘 in the world. The rotation matrix 𝑅 also has

properties such as 𝑅⊤𝑅 = 𝐼 and det(𝑅) = 1, therefore an inverse transformation

from frame 𝑎 into frame 𝑏 satisfies 𝑅𝑏
𝑎 = 𝑅𝑎𝑇

𝑏 = 𝑅𝑎−1

𝑏 .

The rotation matrix is intuitively easy to understand and use in practice, but it

is not an ideal choice for numerical optimization because it consists of 9 parameters.

Two other compact representations, the Euler Angles [37] and quaternions [65] are

preferred in control and estimation related optimizations. In this chapter we focus on

the Euler Angles but defer a detailed introduction to quaternions to later chapters.

Euler Angles

Although there are multiple Euler Angles conventions, we parameterize the robot’s

orientation using Z-Y-X angles [67] (alternatively called Yaw-Pitch-Roll angles or

Tait–Bryan angles). Specifically, 𝜃 = [𝜃𝑟; 𝜃𝑝; 𝜃𝑦] represents an orientation, where 𝜃𝑦,

𝜃𝑝, 𝜃𝑟 are commonly referred as yaw angle, pitch angle, and roll angle respectively.

We denote cos(𝜃𝑖) = 𝑐𝑖 and sin(𝜃𝑖) = 𝑠𝑖 for 𝑖 ∈ {𝑦, 𝑝, 𝑟}. We can construct a rotation

matrix from these angles:

𝑅(𝜃) = 𝑅𝑧(𝜃𝑦)𝑅𝑦(𝜃𝑝)𝑅𝑥(𝜃𝑟) =

⎡⎢⎢⎢⎣
𝑐𝑝𝑐𝑦 𝑐𝑦𝑐𝑝𝑐𝑟 − 𝑐𝑟𝑐𝑦 𝑐𝑟𝑐𝑦 + 𝑐𝑟𝑐𝑦𝑐𝑝

𝑐𝑝𝑐𝑦 𝑐𝑟𝑐𝑦 + 𝑐𝑝𝑐𝑟𝑐𝑦 𝑐𝑟𝑐𝑝𝑐𝑦 − 𝑐𝑦𝑐𝑟
−𝑐𝑝 𝑐𝑝𝑐𝑟 𝑐𝑝𝑐𝑟

⎤⎥⎥⎥⎦ , (2.2)

17

which transforms a vector from the robot body (𝑏) frame to the world inertial (𝑤)

frame [103]. More details can be seen at [67].

The derivative of the Z-Y-X angles �̇� is related to the robot body angular velocity

𝜔𝑏 through the following equation:

�̇� =

⎡⎢⎢⎢⎣
𝜃𝑟

𝜃𝑝

𝜃𝑦

⎤⎥⎥⎥⎦ = Ω(𝜃)𝜔𝑏 =

⎡⎢⎢⎢⎣
1 (𝑠𝑝𝑠𝑟)/𝑐𝑝 (𝑐𝑟𝑠𝑝)/𝑐𝑝

0 𝑐𝑟 −𝑠𝑟
0 𝑠𝑟/𝑐𝑝 𝑐𝑟/𝑐𝑝

⎤⎥⎥⎥⎦𝜔𝑏, (2.3)

where Ω(*) is called “Euler’s kinematic” relation [136].

Leg Forward Kinematics

An important concept in multi-rigid body systems is forward kinematics, which de-

scribes the relationship between joint angles and the position of the end-effector. For

the 𝑗th leg of a legged robot, we define 𝜑 as a vector containing all joint angles,

and �̇� as the joint angle velocities. The forward kinematics function is denoted as

𝑝𝑓 = 𝑔(𝜑) ∈ R3, whose output is the foot position in the robot body frame. The

derivative of this equation leads to the kinematic Jacobian matrix 𝐽(𝜑) that maps

�̇� into the foot’s linear velocity in the body frame:

𝑣𝑓 = �̇�𝑓 = 𝐽(𝜑)�̇�. (2.4)

As an concrete example, the forward kinematics function 𝑔 of a leg of a Unitree

18

A1 robot with 𝜑 = [𝜑1;𝜑2;𝜑3] and kinematic parameters shown in Figure 2-2 is

𝑔(𝜑) =

⎡⎢⎢⎢⎣
𝑜𝑥 − 𝑙𝑐𝑠23 − 𝑙𝑡𝑠2

𝑜𝑦 + 𝑑𝑐1 + 𝑙𝑡𝑐2𝑠1 + 𝑙𝑐𝑠1𝑐23

𝑑𝑠1 − 𝑙𝑡𝑐1𝑐2 − 𝑙𝑐𝑐1𝑐23

⎤⎥⎥⎥⎦ , (2.5)

where 𝑠𝑖 denotes sin(𝜑𝑖) and 𝑐𝑖 = cos(𝜑𝑖), where 𝑖 = 1, 2. Also 𝑠23 = sin(𝜑2 + 𝜑3)

and 𝑐23 = cos(𝜑2 + 𝜑3). The expression is derived using the product of exponentials

(POE) method [103]. The kinematic Jacobian of 𝑔 is

𝐽(𝜑) =⎡⎢⎢⎢⎣
0 −𝑙𝑐𝑐23 − 𝑙𝑡𝑐2 −𝑙𝑐𝑐23

𝑙𝑡𝑐1𝑐2 − 𝑑𝑠1 + 𝑙𝑐𝑐1𝑐23 −𝑠1(𝑙𝑐𝑠23 + 𝑙𝑡𝑠2) −𝑙𝑐𝑠23𝑠1
𝑙𝑡𝑐2𝑠1 + 𝑑𝑐1 + 𝑙𝑐𝑠1𝑐23 𝑐1(𝑙𝑐𝑠23 + 𝑙𝑡𝑠2) 𝑙𝑐𝑠23𝑐1

⎤⎥⎥⎥⎦ , (2.6)

2.3.2 Centroidal MPC

The robot control problem aims to govern key robot states such as position, velocity,

and orientation to achieve a desired behavior. A legged robot can only achieve

balancing and locomotion by switching contact conditions of legs within a gait cycle.

A foot goes through stance phase and swing phase periodically.

Our controller is built on the widely used convex centroidal MPC framework [14,

37]. Assuming the robot has heavy body and light weight limbs, the body dynamics

can be approximated as a single rigid body with a point mass at the centroid (which

coincides with the center of mass) and the legs are modeled as point mass that can

be governed by conventional PD controller [91]. With these assumptions it is very

convenient to decouple the controller into two sub-problems: swing leg tracking and

19

body balancing control.

During swing phase, a swing foot’s position 𝑠(𝑡) moves from lifting up location to

a desired foothold location 𝑠𝑑 through a smooth curve. The desired foothold location

is selected so that the robot get well supported at next contact switch. A standard

selection strategy choose 𝑠𝑑 using the Raibert heuristic [120] such that

𝑠𝑑 = �̄�+ 𝑣𝑡𝑠/2, (2.7)

where 𝑏𝑎𝑟𝑠 is a nominal foot position on the ground right beneath the corresponding

leg hip, 𝑡𝑠 is the swing phase duration, and 𝑣 is the robot body velocity in the world

frame. Foot position 𝑠(𝑡) is then tracked using an end-effector PD controller [37].

The most critical part of the control problem is body balancing control, which

uses an MPC controller with various optimization techniques to achieve fast solution

times. The robot dynamics model, called the centroidal model, neglects the inertia

of the robot’s legs and treats the robot as a single rigid body subjected to ground

reaction forces produced by the feet. Given a body mass 𝑚 and body moment of

inertia expressed in the body frame 𝐽 𝑏, the continuous time dynamic equations of

the centroidal model are

�̇� =

⎡⎢⎢⎢⎢⎢⎢⎣
�̇�

�̇�

�̈�

�̇�𝑏

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣

Ω(𝜔)𝜔𝑏

1
𝑚
𝑓𝑐 − 𝑔𝑤

(𝐽 𝑏)−1(𝜏𝑐 − 𝜔𝑏 × 𝐽 𝑏𝜔𝑏)

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.8)

where the state of the system includes of the center of mass position 𝑝 ∈ R3, Euler

angle representation of the body attitude 𝜃 ∈ R3, world-frame linear velocity 𝑣 ∈ R3,

and body-frame angular velocity 𝜔𝑏 ∈ R3. The input of the system contains a

20

world-frame force input 𝑓𝑐 ∈ R3 and a body-frame torque input 𝜏𝑐 ∈ R3 coming

from ground reaction wrench at the body centroid. The input force and torque are

mapped from the ground reaction forces 𝑓𝑖 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧]
𝑇 generated by each foot

at position 𝑠𝑖 for foot 𝑖 ∈ 1 . . . 𝐿, where 𝐿 is the number of total legs, through the

following relationship:

⎡⎣𝑓𝑐
𝜏𝑐

⎤⎦ =

⎡⎣ 𝐼3 . . . 𝐼3

𝑅(𝜃)𝑇 ⌊𝑠1⌋× . . . 𝑅(𝜃)𝑇 ⌊𝑠𝑛⌋×

⎤⎦𝑢. (2.9)

where 𝑢 =

⎡⎢⎢⎢⎣
𝑓1
...

𝑓𝑛

⎤⎥⎥⎥⎦ is the control input, and 𝐼𝑛 ∈ R𝑛×𝑛 denotes an 𝑛 by 𝑛 identity

matrix. The ground reaction forces are further subjected to friction-cone constraints

to prevent foot slip on a surface with friction coefficient 𝜇. Often, the friction-

cone constraint is approximated as a pyramid, which enables the constraints to be

expressed as a set of linear inequalities:

−𝜇𝑓𝑧 ≤𝑓𝑥 ≤ 𝜇𝑓𝑧

−𝜇𝑓𝑧 ≤𝑓𝑦 ≤ 𝜇𝑓𝑧.
(2.10)

With the model described in (2.8) and (2.9), the MPC controller enforces the dynam-

ics as a set of constraints in a trajectory optimization problem that is solved online.

The problem can be convexified and formulated as a quadratic program (QP), as

explained in [37]. We briefly review the problem formulation and provide a new way

of visualization of MPC problems, which will facilitate our discussion in subsequent

chapters.

21

Mathematically, the most general MPC problem can be formulated as

min
𝑥,𝑢

𝑘−1∑︁
𝑖=0

𝑔(𝑥𝑖,𝑢𝑖)

subject to 𝑥𝑖+1 = 𝑓(𝑥𝑖,𝑢𝑖), 𝑖 = 0 . . . 𝑘 − 1

𝑐(𝑥𝑖,𝑢𝑖) ≤ 0, 𝑖 = 0 . . . 𝑘 − 1

𝑥0 = 𝑥init

(2.11)

in which 𝑔() is a cost function, 𝑓() is the discrete dynamics function, 𝑐() represents

inequality constraint and equality constraints. Moreover, we assume the robot has

a state estimator that estimates the robot state at time 0 as 𝑥init. Once the MPC

problem solution is found, the solved 𝑢0 will be used to control the robot. The ground

reaction forces in the control input 𝑢 are then mapped to the leg joint torques through

the transpose of the kinematic Jacobian.

Problem formulation 2.11 aligns with many conventional numerical optimization

problems [108], thus can be solved by many existing numerical methods. However,

the problem might take a long solver time if cost or dynamics functions are noncon-

vex. Luckily, the MPC problem for legged robots can be convexified by linearizing

the dynamics and cost functions around a nominal trajectory 𝑥𝑟𝑒𝑓 [37] as follows

min
𝑥,𝑢

𝑘−1∑︁
𝑖=0

⃦⃦
𝑥𝑖+1 − 𝑥ref

𝑖+1

⃦⃦
𝑄𝑖

+ ‖𝑢𝑖‖𝑅𝑖

subject to 𝑥𝑖+1 = 𝐴𝑖𝑥𝑖 +𝐵𝑖𝑢𝑖, 𝑖 = 0 . . . 𝑘 − 1

¯
𝑐𝑖 ≤ 𝐶𝑖𝑢𝑖 ≤ �̄�𝑖, 𝑖 = 0 . . . 𝑘 − 1

𝐷𝑖𝑢𝑖 = 0, 𝑖 = 0 . . . 𝑘 − 1

𝑥0 = 𝑥init

(2.12)

22

where the cost function is quadratic, the discrete dynamics function is obtained by

linearizing (2.8) and (2.9) around 𝑥𝑟𝑒𝑓 . The inequality constraint is a rewritten

version of (2.10). The equality constraint means that robot legs that are not in

contact with the ground should have 0 forces. More details can be seen in [37]

We want to emphasize the problem sparsity. First, it is possible to express Prob-

lem (2.12) graphically as Figure 2-3. This is not merely a visualization but also a

way to unveil the underlying sparsity structure of the problem. It is known that a

general quadratic programming problem

min
𝑥

1

2
𝑥𝑇𝑄𝑥+ 𝑞𝑇𝑥

subject to 𝐻𝑥− ℎ = 0

𝐺𝑥 ≤ 0

(2.13)

can be solved by the Karush–Kuhn–Tucker (KKT) system

⎡⎢⎢⎢⎣
𝑄 𝐻𝑇 𝐺𝑇

𝐻 0 0

𝐺 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑥

𝜆

𝜈

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−𝑞

ℎ

0

⎤⎥⎥⎥⎦ , (2.14)

where 𝜆 and 𝜈 are the Lagrange multipliers. For Problem (2.12), the KKT system

can be seen to be a sparse linear system, and the sparsity pattern is exactly the

same as the graph structure shown in Figure 2-3. For example, if we arrange the

decision variables of Problem (2.12) as 𝑥 = [𝑥0,𝑢0,𝑥1,𝑢1, . . . ,𝑥𝑘−1,𝑢𝑘−1]
𝑇 , then the

23

𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

‖𝑥0 − 𝑥0,𝑟𝑒𝑓‖2𝑄0
‖𝑥1 − 𝑥1,𝑟𝑒𝑓‖2𝑄1

‖𝑥2 − 𝑥2,𝑟𝑒𝑓‖2𝑄2

𝑢𝑇0𝑅0𝑢0 𝑢𝑇1𝑅1𝑢1

𝑥1 = 𝐴0𝑥0 +𝐵0𝑢0 𝑥2 = 𝐴1𝑥1 +𝐵1𝑢1

¯
𝑐0 ≤ 𝐶0𝑢0 ≤ 𝑐0,𝐷0𝑢0 = 0

¯
𝑐1 ≤ 𝐶1𝑢1 ≤ 𝑐1,𝐷1𝑢1 = 0

Quadratic Objective
Linear Constraint

Figure 2-3: The graphical representation of a MPC problem

𝐺 matrix in the KKT system can be written as

𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐴1 𝐵1 −𝐼 0 0 . . . 0 0 0

0 0 𝐴2 𝐵2 −𝐼 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . 𝐴𝑘−1 𝐵𝑘−1 𝐼

⎤⎥⎥⎥⎥⎥⎥⎦ (2.15)

Moreover, the internal structure of 𝐴𝑖 and 𝐵𝑖 may also be sparse, since each leg of a

legged robot individually contributes to the robot dynamics. Exploiting the sparsity

can lead to very efficient solver.

2.3.3 Gyrostat Dynamics

The dynamics of a rigid body with RWAs can be modeled as a gyrostat [45]. A

gyrostat is a system of coupled rigid bodies whose relative motions do not change

24

the total inertia tensor of the system, however, the rotation of these RWAs will

generate additional torques and angular momentums that need to be considered in

control. A set of 𝑘 reaction wheels with perfect static and dynamic balance have a

constant inertia in the body frame of the robot that can be expressed as

J𝑟 =
𝑘∑︁

𝑖=1

L𝑖 (2.16)

where L𝑖 ∈ R3×3 is the inertia of the 𝑖-th wheel expressed in the robot’s body frame.

The total angular momentum of the wheels in the body frame of the robot is

ℎ𝑟 =
𝑘∑︁

𝑖=1

L𝑖(𝜔
𝑏 +𝜓𝑖), (2.17)

where 𝜔𝑏
𝑖 is the body angular velocity of the robot and 𝜓𝑖 ∈ R3 is the angular velocity

of wheel 𝑖 in the robot’s body frame. The total angular momentum of the robot ℎ

is then

ℎ = 𝐽𝑏𝜔
𝑏 + ℎ𝑟 (2.18)

= (𝐽𝑏 + J𝑟)𝜔
𝑏 +

𝑘∑︁
𝑖=1

L𝑖𝜓𝑖. (2.19)

Taking the derivative of the angular momentum yields the equation of motion for

the gyrostat,

𝜏𝑐 = J�̇�𝑏 + 𝜔𝑏 × (J𝜔𝑏 +
𝑘∑︁

𝑖=1

L𝑖𝜓𝑖) + 𝜏𝑟, (2.20)

where J ∈ R3×3 is the sum of 𝐽𝑏 and J𝑟, 𝜏𝑐 ∈ R3 is the total body-frame external

torque on the robot, and 𝜏𝑟 ∈ R3 is the net body-frame torque exerted by the RWAs.

Depending on the RWAs configuration, the wheel-frame angular momentum 𝜌 ∈ R𝑘

25

can be mapped to this equation with a constant jacobian matrix Λ𝑟 ∈ R𝑘×3 and the

input torques along the wheel axis 𝑢𝑟 ∈ R𝑘 such that

𝑘∑︁
𝑖=1

L𝑖𝜓𝑖 = Λ𝑇
𝑟 𝜌 (2.21)

𝜏𝑐 = J�̇�𝑏 + 𝜔𝑏 × (J𝜔𝑏 + Λ𝑇
𝑟 𝜌) + Λ𝑇

𝑟 𝑢𝑟. (2.22)

This can be written in the standard manipulator form [91],

𝑀 �̇� + 𝐶(𝑞,𝑣) + 𝜏𝑒𝑥𝑡 = 𝐵(𝑞)𝑢 (2.23)

where the mass matrix 𝑀 , dynamic bias 𝐶(𝑞,𝑣), and control mapping 𝐵(𝑞) for

generalized configuration 𝑞, generalized velocity 𝑣, external torque 𝜏𝑒𝑥𝑡, and control

𝑢 are defined as⎡⎣J 0

0 𝐼𝑘

⎤⎦
⏟ ⏞
𝑀

⎡⎣�̇�𝑏

�̇�

⎤⎦+

⎡⎣𝜔𝑏 × (J𝜔𝑏 + Λ𝑇
𝑟 𝜌)

0

⎤⎦
⏟ ⏞

𝐶(𝑞,𝑣)

+

⎡⎣−𝜏𝑐
0

⎤⎦
⏟ ⏞
𝜏𝑒𝑥𝑡

=

⎡⎣−Λ𝑇
𝑟

𝐼𝑘

⎤⎦
⏟ ⏞
𝐵(𝑞)

[︁
𝑢𝑟

]︁
. (2.24)

2.4 Hardware Design

This section presents the specifics of the mechanical design of the RWA module,

which is pictured in Fig. 2-4. We use only two RWAs, one for the pitch axis and one

for the roll axis. An RWA for the yaw axis is not included as yaw control is much

less important for stability of the robot. The RWAs are driven by two permanent-

magnet synchronous motors, each with a continuous maximum current draw of 60A,

a maximum speed of 1900 RPM, and a maximum torque output of 4.7 Nm. The

26

Figure 2-4: Proof-of-concept RWA system that mounts directly to the back of a
Unitree A1 robot. The system includes two permanent-magnet synchronous motors
that drive two high-inertia flywheels along the roll and pitch axes up to a maximum
speed of 1900 RPM. The system contains its own battery and is capable of generating
a maximum continuous torque of 5 Nm along each axis.

chassis is composed of polycarbonate plates and 3D-printed polylactic acid (PLA).

The overall system has dimensions of 100 × 210 × 300 mm and a total mass of 4.3

kg, including a 2200 mAh lithium polymer battery pack. Variables such as efficiency,

weight, and dimension were not optimized for this prototype. As demonstrated in

Section 2.6, despite the increase in total mass and the change in inertial properties

caused by the addition of the RWA module, the module still significantly improves

the stabilizing capabilities of the robot.

27

2.5 Gyrostat MPC

This section describes an MPC framework that jointly solves for RWA torques and

ground-reaction forces for a quadruped equipped with our RWA module. We incorpo-

rate the RWA dynamics into the centroidal quadruped controller using the gyrostat

model, and we linearize the model to use it as a part of a convex discrete-time

trajectory optimization problem.

2.5.1 Gyrostat Quadruped Dynamics

Our RWA module adds two RWAs that provide control over the body angular mo-

mentum in the pitch and roll axes. Combining the centroidal dynamics from (2.8)

and the RWA rotational dynamics from (2.24), we obtain the following equations of

motion:

�̇� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�

�̇�

�̈�

�̇�𝑏

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣

Ω(𝜔)𝜔𝑏

1
𝑚
𝑓𝑐 − 𝑔𝑤

J−1(𝜏𝑐 + Λ𝑇
𝑟 𝑢𝑟 − 𝜔𝑏 × (J𝜔𝑏 + Λ𝑇

𝑟 𝜌))

𝑢𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.25)

where, in addition to the original centroidal model states, we introduce the RWA

momentum state vector 𝜌 ∈ R2×1 and torque input vector 𝑢𝑟 ∈ R2×1 . The control

input vector 𝑢 ∈ R14×1 for the whole system is now expressed as:

⎡⎢⎢⎢⎣
𝑓𝑐

𝜏𝑐

𝑢𝑟

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝐼3 . . . 𝐼3 032

𝑅(𝜃)𝑇 ⌊𝑠1⌋× . . . 𝑅(𝜃)𝑇 ⌊𝑠𝑛⌋× 032

023 . . . 023 𝐼2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑓1
...

𝑓𝑛

𝑢𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.26)

28

We linearize equations (2.25) about a nominal yaw angle 𝜃𝑦 as in [14]. We simplify

the rotation matrix 𝑅(𝜃) as 𝑅𝑧(𝜃𝑦) from (2.2) using small angle approximation, and

we ignore the Coriolis term in the rotational dynamics assuming that body angular

velocity is small. We also assume that the RWAs’ velocity are small during stable

trotting, and we eliminate the same Coriolis term in the Gyrostat dynamics, reducing

the rotation dynamics from (2.26) to where 0𝑛𝑚 represents a 𝑛×𝑚 matrix with all

zero elements, and 0𝑛 represents a 𝑛 × 𝑛 square matrix with all zero elements. We

now linearize (2.25) for a convex MPC formulation assuming that attitude displace-

ment, body angular velocity, and RWA velocities are small during normal operating

conditions. This allows us to parameterize rotation using 𝑅𝑧(𝜃𝑦) and simplify the

rotational kinematics and dynamics from (2.25) to

�̇� ≈ 𝑅𝑇
𝑧 (𝜃𝑦)𝜔

𝑏

�̇�𝑏 ≈ J−1(𝜏𝑐 + 𝑢𝑟).
(2.27)

29

Finally, we convert the angular velocities into the inertial frame, and the resulting

linearized dynamics for the gyrostat quadruped model becomes

𝑑

𝑑𝑡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝

𝜃

�̇�

𝜔𝑏

𝜌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03 03 𝐼3 03 032

03 03 03 𝑅
𝑇
𝑧 (𝜃𝑦) 032

03 03 03 03 032

03 03 03 03 032

023 023 023 023 02

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝

𝜃

�̇�

𝜔𝑏

𝜌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

031

031

−𝑔𝑤

031

021

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03 . . . 032

03 . . . 032

𝐼3
𝑚

. . . 𝐼3
𝑚

032

J−1𝑅(𝜃)𝑇 ⌊𝑠1⌋× . . . J−1𝑅(𝜃)𝑇 ⌊𝑠𝑛⌋× J−1𝑅(𝜃)𝑇Λ𝑇
𝑟

023 . . . 𝐼2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓1
...

𝑓𝑛

𝑢𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(2.28)

where 𝑔𝑤 ∈ R3 represents the gravity vector. The dynamics is now in a linearized

form parameterized by the yaw angle 𝜃𝑦 and foot positions 𝑠𝑖 such that

�̇�(𝑡) = 𝐴(𝜃𝑦)𝑥(𝑡) +𝐵(𝑠1, . . . , 𝑠𝑛, 𝜃𝑦)𝑢(𝑡). (2.29)

2.5.2 MPC Problem

The problem is now linearized with the continuous-time transition and control ma-

trices 𝐴 and 𝐵. We convert those matrices into discrete-time A and B matrices.

This control problem is then posed as a discrete-time convex quadratic program as

Probme (2.12): where 𝑥𝑖,𝑢𝑖 ∈ R14×1, 𝑄𝑖, 𝑅𝑖 ∈ R14×14 are the state of the robot,

control inputs to the robot, and cost matrices for state and control inputs at time

step 𝑖, respectively. The matrices 𝐶𝑖 in (2.12) are used to enforce linearized friction

30

cone constraints from (2.10). We also regularize the speed of the RWAs inside the

dynamics penalty term and constrain the RWA torques and speeds with the affine

constraints

¯
𝑢𝑟 ≤ 𝑢𝑟 ≤ �̄�𝑟 (2.30)

¯
𝜌 ≤ 𝜌𝑖 ≤ �̄�, 𝑖 = . . . 𝑘 − 1, (2.31)

where �̄�𝑟,
¯
𝑢𝑟, �̄�𝑟,

¯
𝜌𝑟 represents the upper bound and lower bound of the RWAs

control torque and momentum, respectively. The equality constraints in (2.12) are

used to constrain foot forces to be zero when a foot is in the swing phase. The

solution to the QP problem (2.12) returns the ground reaction forces for each of

the feet in contact with the ground and the torques to be applied to the RWAs.

Finally we convert the ground reaction forces into joint torques using the kinematic

jacobian (2.4)

𝜏𝑖 = 𝐽(𝜑𝑖)𝑖𝑅(𝜃)
𝑇𝑓𝑖, (2.32)

where 𝜏𝑖 ∈ R3, 𝜑𝑖 ∈ R3 and 𝑓𝑖 ∈ R3 are the joint torques, joint angles, and ground

reaction forces for leg 𝑖, respectively.

2.5.3 Angular Momentum Error Feedback

During online MPC execution, we introduce an error feedback term on the angular

momentum of the roll RWA such that

𝜃𝑑𝑟 = 𝜃𝑑𝑟 + 𝑘𝑟𝜌𝑟, (2.33)

31

where 𝜃𝑑𝑟 is the nominal desired roll angle that is usually set to 0, 𝑘𝑟 is a feedback

gain for the roll RWA momentum, 𝜌𝑟 is the roll RWA momentum, and 𝜃𝑑𝑟 is the final

desired roll angle used for MPC. We found that this feedback term is essential to

avoid RWA rotor speed saturation during the hardware experiments. There are a

number of factors that contribute to RWA saturation during the hardware exper-

iments, including center-of-mass mismatch between simulated and physical model,

and biases in the state estimation. This feedback term, along with the inequality

constraints in (2.12), keeps the RWA from saturating due to model mismatches and

disturbances.

2.6 Experiments and Results

We now present the simulation and hardware experiment results for the gyrostat

MPC on a Unitree A1 robot equipped with our RWA module. In simulation, we

tested the system’s disturbance rejection and aerial reorientation abilities. On hard-

ware, we tested the system’s balancing capability through a beam walking exper-

iment. To the best of our knowledge, the experiment presented in this chapter is

the first successful hardware demonstration of a beam walk done by a quadruped

robot, where the robot has to continuously balance itself with a near-empty support

polygon.

2.6.1 Hardware/Simulation Setup

We built the gyrostat MPC controller on top of an open-source convex MPC imple-

mentation for the Unitree A1 robot2. The MPC problem from (2.12) is solved using
2https://github.com/ShuoYangRobotics/A1-QP-MPC-Controller

32

https://github.com/ShuoYangRobotics/A1-QP-MPC-Controller

OSQP [138] online at 1000Hz on a computer equipped with an AMD Threadripper

3 CPU. The MPC employs a 20-step horizon and a 0.05 s time step, and we design

a controller stack that uses the same MPC code to control either a hardware robot

or a simulated robot. On hardware, the control torque command is sent to the robot

joint motors and the RWA drivers via Ethernet. In the simulation, the controller

interfaces with the Gazebo simulator [77]. To reduce the sim-to-real gap, the Gazebo

simulation uses the precise model mass and inertial parameters from the robot man-

ufacturer. It also uses a motor dynamics simulation, a fine-tuned soft foot contact

model, and accurate sensor noise injections according to sensor data sheets.

2.6.2 Locomotion Disturbance Rejection

In the simulated disturbance rejection tests, we applied a 600 N, 650 N, and 700

N force to the y-axis of the robot body while trotting. The impulse used in our

experiment is defined as a continuous force disturbance that lasts 0.05 s, and the dis-

turbance is applied at precisely the same gait phase for each test. The same impulse

is applied to a robot equipped with the RWA module but running the base centroidal

MPC controller [37] and the same robot running the gyrostat MPC controller. Fig-

ure 2-5 shows the roll error response of both robots during the 650 N impulse test

in Gazebo. The maximum roll error is reduced by 26% with faster steady-state con-

vergence. The experiments demonstrate an enhanced ability to recover from sudden

impacts due to better inertial stabilization when the robot is airborne. During the

700 N impulse experiments, the gyrostat MPC controller consistently recovers from

the impact while the base centroidal MPC controller fails. Figure 2-6 demonstrates

this disturbance rejection behavior on hardware, though without precisely quantified

impulses.

33

0 0.5 1 1.5 2 2.5 3 3.5
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1

Time (s)

R
ol

l(
ra

d)

Gyrostat MPC
Centroidal MPC

0 0.5 1 1.5 2 2.5 3 3.5 4

−5

0

5 Threshold

Threshold

Time (s)

R
ol

lT
or

qu
e

(N
m

)

Figure 2-5: Roll error (top) and RWA torque responses (bottom) to a 650 N impulse
applied to the robot’s body y-axis at 𝑡 = 1.2 seconds.

34

(a) (b) (c)

Figure 2-6: Hardware impulse test where we provide an impulse force on the robot
during locomotion with a kick. 2-6a shows the robot performing stable trotting when
the impulse is applied. 2-6b shows the robot losing balance on the footholds while
maintaining a stable attitude as it eventually recovers from the impulse in 2-6c.

.

2.6.3 Aerial Re-orientation

We also tested the aerial reorientation capability of the gyrostat MPC controller.

By locking the joints of the robot and solely relying on the torques from the RWAs,

we dropped the robot from a height of 0.5 m with a 0.6 radian initial roll error, as

shown in Figure 2-7. The RWAs were able to correct the robot’s orientation in before

touchdown. This experiment verifies that the RWAs are able to quickly correct large

orientation errors in mid-air.

2.6.4 Balance-Beam Walking

To demonstrate the full capability of the gyrostat MPC controller on hardware,

we perform a traversal of a narrow wooden beam, as shown in Figure 2-1 and the

supplementary video. Since the support polygon is always close to a line, it is

almost impossible for a standard quadruped to perform balancing and locomotion

35

Figure 2-7: A drop test sequence where the robot reorients itself with the torques
from the reaction wheels. The robot is initially positioned 50 cm off the ground with
a 0.6 radian roll error. The RWA controller is set to turn on immediately after release
to correct the attitude error.

simultaneously on the beam. In contrast, our robot with the RWA module and the

gyrostat MPC controller is able to maintain a stable roll angle to keep itself from

falling.

Hardware demonstration with the Unitree A1 poses a major challenge — the

robot’s deformable rubber feet cause unwanted vibration at higher walking frequency.

To achieve stable beam walking, we lengthen the gait cycle from 1s to 3s. This

significantly reduced the robot’s walking speed and largely eliminated the vibration.

We also fuse the robot’s proprioceptive sensor data with an external motion-capture

system in a Kalman Filter to achieve sub-centimeter position estimation so the robot

can place foothold locations with sufficient accuracy to stay on the beam, which is

less than 6 cm wide. Figure 2-8 shows the roll angle, roll RWA torque, and roll RWA

velocity collected during the beam walking experiment. The RWA speed and torque

are effectively kept under the threshold limits (200 rad/s and 5 Nm respectively) by

36

the MPC constraints.

2.7 Discussion

We have presented a reaction-wheel actuator system that enhances quadrupedal

robots’ balancing and stabilization abilities during challenging locomotion tasks. We

have shown that RWAs can be integrated into a state-of-the-art MPC framework

with a few relatively minor modifications, and we have demonstrated our proposed

gyrostat MPC controller in a series of hardware and simulation experiments. Our

simulated experiments demonstrate that the RWA module helps the quadruped han-

dle larger disturbances and gives it self-righting capabilities in mid-air. On hard-

ware, we have successfully demonstrated the first narrow-beam walking performed

by a quadruped. We believe that RWA modules like ours can be better optimized

for lower power consumption and weight, and be integrated into many legged robot

designs for improved robustness. The benefit of MPC

37

0 10 20 30 40 50 60 70 80
−0.05

0

0.05

0.1

Time (s)

R
ol

l(
ra

d)

reference

0 10 20 30 40 50 60 70 80

−5

5 Threshold

Threshold

Time (s)

R
ol

lT
or

qu
e

(N
m

)

0 10 20 30 40 50 60 70 80

−200

200 Threshold

Threshold

Time (s)

R
ol

lV
el

(r
ad

/s
)

Figure 2-8: Roll angle, roll RWA torque, and roll RWA velocity during the hardware
beam walking experiment.

38

Chapter 3

Proprioceptive Odometry and Online

Kinematic Calibration

This chapter introduces a classical state estimation technology for legged robots:

Kalman filter-based proprioceptive odometry. We then describe an online method to

calibrate certain kinematic parameters that can be difficult to measure offline due to

dynamic deformation effects and rolling contacts. A kinematic model of the robot’s

legs that depends on these parameters is used, along with measurements from joint

encoders, foot contact sensors, and an inertial measurement unit (IMU), to predict

the robot’s body velocity. This predicted velocity is then compared to another ve-

locity measurement from, for example, a camera or motion capture system. The

difference between them is used to compute an update on the kinematic parameters.

The method can be incorporated into any Kalman filter observation model involving

leg odometry. We provide a theoretical observability analysis of our method, as well

as validation both in simulation and on hardware. Hardware experiments demon-

strate that online kinematic calibration can significantly reduce position drift when

39

relying on odometry.

3.1 Introduction

Control and state estimation algorithms for legged robots depend critically on leg

kinematic parameters. During locomotion, a planner calculates foot positions to

generate collision-free foot-swing trajectories [121], and an estimator computes foot

velocities to estimate the robot body’s velocity [14, 19]. Foot positions and velocities

are calculated using the forward kinematics [14, 103], which depend on kinematic

parameters such as leg link lengths and motor offset distances.

On legged robots, the Leg Odometry (LO) [24] is commonly used to estimate

robot body velocity. Assuming non-slipping contact, the joint angle velocity mea-

surements of a leg can be mapped into a body velocity estimation by the Jacobian

of the forward kinematics. Inaccurate leg-length knowledge can lead to velocity esti-

mation errors, as shown in Fig. 3-1b, which prevent the robot state estimator from

getting correct odometry information.

Existing legged robot controllers usually use fixed leg-length values obtained from

a 3D model of the robot or manual measurement [14, 59, 158]. However, actual

kinematic parameters are often not precisely known due to manufacturing variations,

wear over time, rolling contacts, and dynamic deformation during normal operation

(see Fig. 3-1a). Taking the Unitree A1 robot’s kinematic structure as an example

[148], its deformable foot makes the calf link length vary between 0.19-0.22 m. When

the robot moves at 2.0m/s, joint angle velocity can reach 20rad/s, then a 0.01m error

in link length leads to 0.2m/s velocity estimation error. If we integrate this poor

velocity estimate to get a position estimate, position drift can grow by 0.2m every

second. Moreover, it is possible for the leg to experience sudden length changes due

40

to external impacts or damage. Although the controller may be robust enough to

maintain balance [32], knowledge of the new length can greatly improve stability and

reduce foot slip. Therefore, online calibration of kinematic parameters can be hugely

beneficial during robot operation.

We propose a method to enable legged robots to calibrate unknown kinematic

parameters online. We design a velocity measurement model that compares the LO

velocity with accurate body velocity information from an external motion-capture

system or visual odometry [86], and use the difference between these measurements

to update the kinematic parameters. This can be integrated into many standard

state-estimation algorithms so that kinematic parameters can be estimated in real

time together with the robot’s state.

We present experiments with a Kalman filter that demonstrate position drift

can be reduced by up to an order of magnitude through online calibration. We

also show doing online calibration in an optimization-based sliding-window state

estimator [118] is possible.

The chapter proceeds as follows: In Section 3.2 we survey related work in kine-

matics calibration and legged robot state estimation. Section 3.3 reviews Kalman

filtering and forward kinematics. In Section 3.4 we define the calibration problem,

derive our solution, and provide an observability analysis. The results of simula-

tion and hardware experiments are presented in Section 3.5. Finally, Section 3.6

concludes the chapter.

Our contributions include:

• A measurement model to calibrate unknown kinematic parameters of legged

robots online and reduce odometry drift.

• A theoretical observability analysis to examine which kinematic parameters are

41

(a)

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13
−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

Ve
lo

ci
ty

(m
/s

)

Inaccurate calf length leads to
large body velocity calculation error

Ground truth
Calculation using calf length 0.21m
Calculation using calf length 0.3m

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 60

0.1

0.2

0.3

0.4

Time (s)

C
al

fl
en

gt
h

(m
)

Different calibration runs
converge to the same length value

Leg 2 calf length, initial value = 0.18m
Leg 2 calf length, initial value = 0.25m
Leg 2 calf length, initial value = 0.30m

(c)

Figure 3-1: (a) Foot compression during locomotion changes calf length. (b) Body
velocity inferred from kinematics of the Leg 2 (front-left) with wrong calf length
(yellow) has larger error comparing to that using calibrated length (red). we enlarge
possible leg length error to make velocity error more perceptible. The shaded green
regions are periods when the leg not contacts the ground, during which the LO
velocity is meaningless. (c) Our method calibrates calf length of the Leg 2 to around
0.21m (dash line) whatever the initial length value is.

42

observable.

• Integration of the measurement model into two different state estimators.

• Experimental validation on a Unitree A1 robot.

3.2 Related Work

We first review legged robot state estimation, with a particular focus on using propri-

oceptive odometry to obtain robot body position, velocity, orientation, and rotation

rate for control purposes. Following this, we review works on kinematic calibration.

3.2.1 Legged Robot State Estimation

Research on onboard real-time state (including mainly pose and velocity) estimation

for legged robots became popular in the recent decade [14, 19, 56, 75, 125, 158,

165]. With the increasing commercial availability of low-cost quadrupedal [39, 148]

and humanoid robots, there is a strong need for cost-effective and reliable sensing

solutions for such robots with limited computation resources.

Leg Odometry (LO) is the earliest state estimation method for humanoid and

hexapod robots [70, 90]. The robot pose can be calculated using the leg kinematics

from feet that are in stable contact with the ground. Repeated dead reckoning using

stance foot allows position trajectory to be estimated [124]. However, LO itself is

prone to errors such as foot slippage and joint encoder noise. [123, 134] combines IMU

and LO using Extended Kalman Filters (EKF) to improve accuracy and robustness.

An observability analysis presented in [19] shows that on a 12DOF quadruped robot,

the body pose, velocity, and IMU biases can be recovered using one body IMU, joint

encoders, and foot contact sensors stably. This EKF formulation is also applicable

43

to humanoid robots [125]. A similar linear KF formulation is proposed in [14]. The

invariant EKF is proposed in [53] to improve orientation estimation convergence.

Since all sensors are proprioceptive, in other words, contained within the body of

the robot, these methods all belong to Proprioceptive Odometry (PO). Moreover,

although many variations on the EKF have been proposed, they all use the same basic

types and number of sensors. The inertia information aids contact sensing [17, 23] to

ensure LO is only used while feet are in contact. Some algorithms estimate contacts

using kinematic information [61], eliminating the dependency on foot contact sensors.

In PO methods, velocity estimations are typically good enough for stable closed-loop

control, but position drifts are often as high as 10%-15% [19, 53, 75, 159]. The

reason is, in addition to foot slippages, a legged robot also often experiences link

deformations, rolling ground contacts [163], and excessive impacts with the ground,

all of which lead to either large sensor noise or incorrect or biased velocity estimation

if sensor measurement models do not capture the actual contact behavior. It has been

shown that addressing these issues properly in PO can improve position estimation

accuracy [163]. Nevertheless, PO is widely used because not all legged robot control

applications require high-accuracy position estimation.

3.2.2 Kinematics calibration

Kinematics calibration for robot manipulators has been studied for decades [126].

Standard methods use the error between the end-effector position output from the

forward kinematics model and position measurement from an accurate sensor to

update the model parameters. Early calibration approaches relied on laser trackers

[106]. Today, “hand-eye” calibration with computer vision is accurate enough to

calibrate manipulators and even humanoid robot arms [107].

44

Online parameter calibration during state estimation has also been investigated

in multi-sensor fusion. When using different sensors together to estimate robot pose

(position and orientation), rigorous observability proofs have demonstrated that the

extended Kalman Filter (EKF) [73, 86] can estimate spatial transformations among

sensors (extrinsics). The visual-inertial system (VINS) [119] calibrates not only IMU-

camera extrinsics parameters, but also sensor time delay in a sliding-window (also

called fix-lag smoother [101] or receding-horizon [104]) optimization based estima-

tion scheme. This work shows that, in visual-inertial odometry, jointly estimating

robot state, sensor bias, and sensor transformations can reduce long-term position

estimation drift. The observability study of these parameters to guarantee that they

can be estimated in both EKF and optimization-based state estimators is done in

[168].

Only a few existing works consider online kinematics-parameter calibration in

legged robot state estimation, and the effects of parameter variations over time on

estimator performance has not been well studied in the literature. Fusing IMU

data and LO velocity in Kalman filters has been used on several different robots

[14, 19, 24]. The invariant EKF was introduced in [53] to improve filter convergence.

Optimization-based methods were proposed in [54, 158, 160]. The position drift due

to leg odometry was studied in [159], where drift was compensated by a body velocity

bias.

With the aid of special markers, “foot-eye” kinematics calibration on legged robots

was demonstrated in [15]. The authors of [122] calibrated camera extrinsics in an

optimization-based legged robot state estimator. A measurement model to allow the

robot’s controller to adapt to dynamic model changes online was proposed in [140].

Dynamic deformation during bipedal locomotion was considered in [153], where the

deformation is modeled as rotations among links. Estimating the deformation im-

45

proves both position estimation and control. Finally, the kinematics calibration

method proposed in [18] is similar to ours. However, it runs an expensive offline

batch optimization and no observability analysis is provided.

3.3 Background

In this section we provide a detailed explanation to quaternion rotation representa-

tion and extended Kalman filtering. These two topics are fundamental to the rest

of the thesis and extensively used in the algorithm implementation of this chapter,

Chapter 4, Chapter 5, and Chapter 6.

3.3.1 Quaternion

A quaternion represents a spatial rotation in the following form

𝑞𝑤 + 𝑞𝑥i+ 𝑞𝑦j+ 𝑞𝑧k (3.1)

where 𝑞𝑥, 𝑞𝑦, 𝑞𝑧, and 𝑞𝑤 are real numbers. i, j, and k are basis elements. The

Hamilton convention for basis element operations is

i2 = j2 = k2 = ijk = −1 (3.2)

We often quaternion as

𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞𝑥

𝑞𝑦

𝑞𝑧

𝑞𝑤

⎤⎥⎥⎥⎥⎥⎥⎦ (3.3)

46

where 𝑞𝑤 is the scalar part and q𝑣 = [𝑞𝑥; 𝑞𝑦; 𝑞𝑧] is the vector part. So it can also be

written as

𝑞 =

⎡⎣q𝑣

𝑞𝑤

⎤⎦ (3.4)

A unit quaternion is a quaternion with unit norm ‖𝑞‖ = 1. It can always be

written as

𝑞 =

⎡⎣u sin 𝜑
2

cos 𝜑
2

⎤⎦ (3.5)

The vector u is a rotation axis and 𝜑 is a rotational angle.

3.3.2 Quaternion Multiplicative Map

The quaternion multiplication is shown to be [135]

𝑝⊗ 𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝𝑥

𝑝𝑦

𝑝𝑧

𝑝𝑤

⎤⎥⎥⎥⎥⎥⎥⎦⊗
⎡⎢⎢⎢⎢⎢⎢⎣
𝑞𝑥

𝑞𝑦

𝑞𝑧

𝑞𝑤

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝𝑤𝑞𝑥 + 𝑝𝑥𝑞𝑤 + 𝑝𝑦𝑞𝑧 − 𝑝𝑧𝑞𝑦
𝑝𝑤𝑞𝑦 − 𝑝𝑥𝑞𝑧 + 𝑝𝑦𝑞𝑤 + 𝑝𝑧𝑞𝑥

𝑝𝑤𝑞𝑧 + 𝑝𝑥𝑞𝑦 − 𝑝𝑦𝑞𝑥 + 𝑝𝑧𝑞𝑤

𝑝𝑤𝑞𝑤 − 𝑝𝑥𝑞𝑥 − 𝑝𝑦𝑞𝑦 − 𝑝𝑧𝑞𝑧

⎤⎥⎥⎥⎥⎥⎥⎦ (3.6)

This allows us to write the quaternion multiplication into matrix multiplication form

𝑝⊗ 𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝𝑤 −𝑝𝑧 𝑞𝑦 𝑝𝑥

𝑝𝑧 𝑝𝑤 −𝑝𝑥 𝑝𝑦

−𝑝𝑦 𝑝𝑥 𝑝𝑤 𝑝𝑧

−𝑝𝑥 −𝑝𝑦 −𝑝𝑧 𝑝𝑤

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞𝑥

𝑞𝑦

𝑞𝑧

𝑞𝑤

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞𝑤 𝑞𝑧 −𝑞𝑦 𝑞𝑥

−𝑞𝑧 𝑞𝑤 𝑞𝑥 𝑞𝑦

𝑞𝑦 −𝑞𝑥 𝑞𝑤 𝑞𝑧

−𝑞𝑥 −𝑞𝑦 −𝑞𝑧 𝑞𝑤

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝𝑥

𝑝𝑦

𝑝𝑧

𝑝𝑤

⎤⎥⎥⎥⎥⎥⎥⎦ (3.7)

47

By inspection we can write these matrices as

ℒ(𝑝) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝𝑤 −𝑝𝑧 𝑞𝑦 𝑝𝑥

𝑝𝑧 𝑝𝑤 −𝑝𝑥 𝑝𝑦

−𝑝𝑦 𝑝𝑥 𝑝𝑤 𝑝𝑧

−𝑝𝑥 −𝑝𝑦 −𝑝𝑧 𝑝𝑤

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎣𝑝𝑤I+ ⌊p𝑣⌋× p𝑣

−p𝑇
𝑣 𝑝𝑤

⎤⎦ (3.8)

and

ℛ(𝑞) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞𝑤 𝑞𝑧 −𝑞𝑦 𝑞𝑥

−𝑞𝑧 𝑞𝑤 𝑞𝑥 𝑞𝑦

𝑞𝑦 −𝑞𝑥 𝑞𝑤 𝑞𝑧

−𝑞𝑥 −𝑞𝑦 −𝑞𝑧 𝑞𝑤

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎣𝑞𝑤I− ⌊p𝑣⌋× q𝑣

−q𝑇
𝑣 𝑞𝑤

⎤⎦ (3.9)

where ⌊*⌋× is defined as (2.1). Therefore

𝑝⊗ 𝑞 = ℒ(𝑝)𝑞 = ℛ(𝑞)𝑝 (3.10)

3.3.3 Quaternion & Rotation Matrix

We introduce a matrix 𝐵 =

⎡⎣𝐼3×3

0

⎤⎦ that converts a vector in R3 to a quaternion

with zero scalar part. We denote rotation matrix 𝑅(𝑞) ∈ 𝑆𝑂(3) as a function of 𝑞,

which is in the form of

𝑅(𝑞) = 𝐵𝑇ℒ(𝑞)ℛ(𝑞)𝑇𝐵. (3.11)

3.3.4 Quaternion Exponential & Logarithm Maps

In both robot control and estimation, two critical tools are the exponential map (exp

map) and the logarithmic map (log map) of rotations. These tools are necessary to

48

properly define derivatives and perturbations of rotations. To understand it well we

recommend reading [135].

Any 𝑆𝑂(3) element can be viewed as a rotation angle 𝜑 around an unit axis 𝑢.

(Actually, according to the Chasles’ theorem, any spatial displacement of a rigid body

can be defined by a rotation about an axis and a translation along the same axis.)

This angle-axis parameterization is commonly used for explaining and visualizing a

rotation. It can be written as a quaternion

𝑞 =

⎡⎣𝑢 sin(𝜑
2
)

cos(𝜑
2
)

⎤⎦
This half angle comes from the fact that quaternion has a “double cover” property

[135]. Let’s call vector 𝜃 = 𝜑𝑢 a 3-parameter representation of the rotation, and

define

Exp(𝜃) =

⎡⎣𝑢 sin(𝜑
2
)

cos(𝜑
2
)

⎤⎦ (3.12)

as the quaternion exponential map, which converts a 3-parameter representation to

a quaternion.

The logarithm map is essentially the inverse of the exponential map. It converts

a quaternion to a 3-parameter representation as angle-axis parameterization. From

(3.12), it can be seen that we can get angle and axis easily and define the logarithm

map as

Log(𝑞) = 𝜃 = 𝜑𝑢 = 2arctan(‖𝑞𝑣‖, 𝑞𝑤) · 𝑞𝑣/‖𝑞𝑣‖ (3.13)

where 𝜑 = 2arctan(‖𝑞𝑣‖, 𝑞𝑤) is the rotation angle, and 𝑢 = 𝑞𝑣/‖𝑞𝑣‖ is the rotation

axis.

49

3.3.5 Small Angle Exp & Lop Maps

In practice we need some approximation to the exp and the log map. For one

thing, we don’t want to use (3.13) when the rotation is small - if ‖𝑞𝑣‖ approaches 0,

it will cause numerical problems. However, small rotation is ubiquitous in rotation

related state estimation and optimal control. For another, we often need the following

Jacobian matrix
𝜕Log(𝑞 ⊗ Exp(𝜃))

𝜕𝜃
. (3.14)

The term

𝑞 ⊗ Exp(𝜃) (3.15)

is called small angle update. We will explain the significance of this matrix in the

next section. With arctan and ‖𝑞𝑣‖ involved, it is really hard to write down the

jacobian analytically.

In this work, we use approximations of the exponential and logarithm maps com-

mon in spacecraft attitude estimation [84] and visual-inertial odometry [118]:

Exp(𝜃) ≈

⎡⎣ 1

𝜑
2
u

⎤⎦ , (3.16)

Log(𝑞) = 𝜑u ≈ 2𝑞𝑣. (3.17)

We also make use of a similar first-order approximation of the matrix exponential [51]:

Exp(𝜃) ≈ (𝐼 + ⌊𝜃⌋×). (3.18)

The result quaternion in (3.16) is not a unit quaternion so a manual normalization

50

can be added after performing small angle update 𝑞⊗Exp(𝜃). With this simplication,

the jacobian matrix 3.14 is also got simplified as

𝜕Log(𝑞 ⊗ Exp(𝜃))
𝜕𝜃

=

⎡⎢⎢⎢⎣
𝑞𝑤 −𝑞𝑧 𝑞𝑦

𝑞𝑧 𝑞𝑤 −𝑞𝑥
−𝑞𝑦 𝑞𝑥 𝑞𝑤

⎤⎥⎥⎥⎦ = 𝑞𝑤I+ ⌊𝑞𝑣⌋× (3.19)

where 𝑞𝑣 = [𝑞𝑥; 𝑞𝑦; 𝑞𝑧] and 𝑞𝑤 are elements of 𝑞. This is the top-left 3 × 3 block of

ℒ(𝑞) as defined in 3.8. We can write ℒ(𝑞)3×3 to denote it.

In literature, there are other approximations to the exp and log map. For exam-

ple, the Rodrigues parameters and Cayley map [7] is used in LQR based trajectory

optimization problems [65], which is defined as

𝛿𝑞 = Exp𝑐𝑎𝑦𝑙𝑒𝑦(𝛿𝜃) =
1√︀

1 + ‖𝛿𝜃‖2

⎡⎣ 1

𝛿𝜃

⎤⎦ . (3.20)

And the inverse Cayley map [65]

Log𝑐𝑎𝑦𝑙𝑒𝑦(𝑞) = 𝑞𝑣/𝑞𝑠

converts small angle into the Rodrigues parameters 𝛿𝜃.

3.3.6 Quaternion Kinematics

The Exp Map allows for defining derivatives of quaternions which is critical for IMU

kinematics.

If a rigid body has an orientation 𝑞 and it rotates at an body frame angular

velocity 𝜔. The changing rate of the quaternion coefficients is

51

�̇� = lim
Δ𝑡→0

𝑞 ⊗ Exp(𝜔∆𝑡)− 𝑞
∆𝑡

= lim
Δ𝑡→0

𝑞 ⊗

⎡⎣1
2
𝜔∆𝑡

1

⎤⎦− 𝑞 ⊗
⎡⎣0
1

⎤⎦
∆𝑡

=
1

2
𝑞 ⊗

⎡⎣𝜔
0

⎤⎦ (3.21)

3.3.7 Rotation Matrix Exp & Log Map

Similiar in the quaternion case, a rotation angle 𝜑 and an rotation axis 𝑢 can be

writen as a rotation matrix as well. This is the rotation matrix exponential map

Exp(𝜑𝑢) = 𝑒𝜑⌊𝑢⌋
×
= 𝐼 + 𝜑⌊𝑢⌋× +

1

2
𝜑2(⌊𝑢⌋×)2 + 1

3
𝜑3(⌊𝑢⌋×)3 + · · · , (3.22)

The Rodrigues rotation formula proves that

Exp(𝜑𝑢) = 𝐼 + sin𝜑⌊𝑢⌋× + (1− cos𝜑)(⌊𝑢⌋×)2 (3.23)

Also in practice this exponential map can be simplified by approximiation. We

truncate the Taylor series in 3.22, then let

Exp(𝜑𝑢) ≈ 𝐼 + 𝜑⌊𝑢⌋× (3.24)

or we just write

Exp(𝜔) ≈ 𝐼 + ⌊𝜔⌋× (3.25)

for any 𝜔 ∈ R3 with small norm.

The rotation matrix exponential map (especially the simplified version) is some-

times prefered during rotation related derivation because it is a 3-by-3 matrix that

52

performs vector rotation by direct multiplcation. Also it is a bit cleaner than quater-

nion exponential map because the half angle in quaternion can be confusing some-

times.

On the other hand, the rotation logarithm map is not easy to work with. Given a

rotation matrix 𝑅, its logarithm map Log(𝑅) = 𝜑𝑢 recovers the rotation angle and

axis as

𝜑 =arccos(
𝑡𝑟𝑎𝑐𝑒(𝑅)− 1

2
) (3.26)

𝑢 =
[𝑅−𝑅𝑇]∨

2 sin𝜑
(3.27)

where []∨ is the inverse of Eqn. (2.1) This map is undefined when 𝑅 is identity so it

potentially has numerical problems for small angles.

3.3.8 Rotation Kinematics

If a rigid body has an orientation 𝑅 and it rotates at an body frame angular velocity

𝜔. The changing rate of the rotation matrix coefficients is

�̇� = lim
Δ𝑡→0

𝑅⊗ Exp(𝜔∆𝑡)−𝑅
∆𝑡

= lim
Δ𝑡→0

𝑅(𝐼 + ⌊𝜔∆𝑡⌋×)−𝑅
∆𝑡

= 𝑅⌊𝜔⌋× (3.28)

3.3.9 IMU-driven Error-state Kalman Filter

One of the standard approaches to estimate a robot’s pose and velocity is the ex-

tended Kalman Filter (EKF) [135]. When working with EKF, we often first formulate

the continuous time process model

�̇� = 𝑓(𝑥) + 𝑤, (3.29)

53

where 𝑓 is a state evolution function and 𝑤 is the noise. In reality, the true state 𝑥𝑡

cannot be directly measured, nor does the noise. Our best knowledge is

˙̂𝑥 = 𝑓(�̂�). (3.30)

Compute the Taylor expansion around 𝑥 = �̂�+ 𝛿𝑥, then we can easily see

𝛿�̇� =
𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
�̂�𝑡−1

𝛿𝑥+ 𝑤. (3.31)

This model is the error dynamic process model which describes how the error of

our estimation evolves. In practice we need its discrete time version because sensor

data arrives periodically. Although precise discretization is complicated, a practical

simplication for two consecutive time instances 𝑡− 1 and 𝑡 is

𝛿𝑥𝑡 = 𝐹 |�̂�𝑡−1𝛿𝑥𝑡−1 + 𝑤 = (𝐼 +∆𝑡
𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
�̂�𝑡−1

)𝛿𝑥𝑡−1 + 𝑤 (3.32)

At each time instance 𝑡 we also get some sensor data 𝑧𝑡, we know it is an obser-

vation of the underlying true state

𝑧𝑡 = ℎ(𝑥𝑡) + 𝑣, (3.33)

where ℎ is a measurement model, and 𝑣 is the measurement noise. Also, using the

same measurement model, we can calcuate an expected output given our current

state estimation

𝑦𝑡 = ℎ(�̂�𝑡). (3.34)

54

The two equations give us

𝑧𝑡 − 𝑦𝑡 = 𝑧𝑡 − ℎ(�̂�𝑡) =
𝜕ℎ

𝜕𝑥

⃒⃒⃒⃒
�̂�𝑡

𝛿𝑥𝑡 + 𝑣 (3.35)

Eqn (3.32) and eqn (5.3) allows us to formulate the error state Kalman Filter

(ESKF). Denote “innovation” 𝑠𝑡(𝑥) = 𝑧𝑡 − ℎ(𝑥), 𝐹 = 𝐼 +∆𝑡𝜕𝑓
𝜕𝑥

, 𝐻 = 𝜕ℎ
𝜕𝑥

, covariance

of 𝑤 as 𝑄, and covariance of 𝑣 as 𝑅. With ignoring some technical caveats, we define

the ESKF as follows:

Algorithm 1: Error State Kalman Filter
procedure

�̂�𝑡−1 = 𝑥0 ◁ Initial State
𝑃𝑡−1 = 𝑃0 ◁ Initial Covariance
𝛿𝑥𝑡−1 = 0 ◁ Assume �̂�𝑡−1 = 𝑥𝑡−1

𝛿𝑥𝑡|𝑡−1 = 𝐹 |�̂�𝑡−1𝛿𝑥𝑡−1 ◁ Can be neglected since always 0
𝑃𝑡|𝑡−1 = 𝐹𝑃𝑡−1𝐹

𝑇 +𝑄 ◁ Process Update
𝑠𝑡 = 𝑧𝑡 − ℎ(�̂�𝑡−1) ◁ Innovation evaluated at �̂�𝑡−1 + 𝛿𝑥𝑡|𝑡−1

𝑆𝑡 = 𝐻𝑃𝑡|𝑡−1𝐻
𝑇 +𝑅

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻
𝑇𝑆−1

𝑘 ◁ Kalman gain calculation
�̂�𝑡 = �̂�𝑡−1 +𝐾𝑡𝑠𝑡 ◁ Kalman update
𝑃𝑡 = (𝐼 −𝐾𝑡𝐻)𝑃𝑡|𝑡−1

end procedure

For legged robot state estimation, IMU is a central building block for estimating

robot pose. Let 𝑥𝑘 = [𝑝; 𝑞;𝑣] ∈ R10 be the true robot state at time step 𝑘, where 𝑝 ∈

R3 is the robot position in the world frame, 𝑞 is the robot’s orientation quaternion,

and 𝑣 ∈ R3 is the linear velocity of the robot’s body represented in the world frame.

We also denote the estimate of the robot’s state as �̂�𝑘 = [�̂�; �̂�; �̂�]. State errors are

parameterized as 𝛿𝑥𝑘 = [𝛿𝑝; 𝛿𝜃; 𝛿𝑣] ∈ R9 = [𝑝− �̂�;Log(�̂�−1 ⊗ 𝑞);𝑣 − �̂�].

Assuming the robot’s body has an IMU that outputs bias-free linear acceleration

𝑎 ∈ R3 and angular velocity 𝜔 ∈ R3 at time 𝑘, The discrete error-state process

55

dynamics 𝛿𝑥𝑘+1 = 𝑓(𝛿𝑥𝑘,𝑎,𝜔,𝑛) are [135]:

𝛿𝑝𝑘+1 = 𝛿𝑝𝑘 + 𝛿𝑣𝑘∆𝑡+ 𝑛𝑣 (3.36)

𝛿𝜃𝑘+1 = (𝐼 − ⌊𝜔∆𝑡⌋×)𝛿𝜃𝑘 + 𝑛𝜔 (3.37)

𝛿𝑣𝑘+1 = 𝛿𝑣𝑘 −𝑅(𝑞)⌊𝑎∆𝑡⌋×𝛿𝜃𝑘 +𝑅(𝑞)𝑛𝑎, (3.38)

where ∆𝑡 is the time between two IMU readings and 𝑛 = [𝑛𝑣;𝑛𝜔;𝑛𝑎] contains

random noise sampled from a Gaussian distribution. We refer readers to [135] for a

detailed derivation of the process dynamics.

In addition to an IMU, other sensors may provide observations of the robot’s

state. For example, a motion-capture system or cameras can measure the robot’s

pose [86]. We use 𝑧𝑘 = ℎ(𝑥𝑘)+𝑛𝑟 to denote such noisy sensor measurements, where

𝑛𝑟 is assumed to be Gaussian noise.

As for the Kalman update, we use the following equations to convert estimated

error state to the actual state. Special care is taken for the quaternion part, which

leverages the exp map we explained in Section 3.3.4.

�̂�𝑘+1 ← �̂�𝑘 + 𝛿�̂�, (3.39)

�̂�𝑘+1 ← 𝐿(�̂�𝑘)Exp(𝛿𝜃), (3.40)

�̂�𝑘+1 ← 𝑣𝑘 + 𝛿�̂�. (3.41)

3.3.10 Leg Odometry Velocity

Assuming the 𝑗’th foot is in contact with the ground and does not slip, 𝑔 and 𝐽 can

be used to calculate the body velocity of the robot. Let 𝑝𝑤𝑓 denote the foot position

in the world frame (see Fig. 2-2); It is a function of the robot’s body position 𝑝 and

56

joint angles 𝜑:

𝑝𝑤𝑓 = 𝑝+𝑅(𝑞)𝑝𝑓 = 𝑝+𝑅(𝑞)𝑔(𝜑). (3.42)

Let the time derivative of 𝑝𝑤𝑓 be 𝑣𝑤𝑓 . The no-slip assumption means 𝑣𝑤𝑓 = 0. There-

fore, by differentiating (3.42), we have

0 = 𝑣𝑤𝑓 = �̇�𝑤𝑓 = �̇�+𝑅(𝑞)
𝑑

𝑑𝑡
𝑔(𝜑) +

𝑑

𝑑𝑡
𝑅(𝑞)𝑔(𝜑). (3.43)

It is shown in [103] that 𝑑
𝑑𝑡
𝑅(𝑞) = 𝑅(𝑞)⌊𝜔⌋×, and we defined 𝑣 = �̇�. Therefore

from (3.43) we derive an expression for the body velocity in the world frame:

𝑣 = −𝑅(𝑞)[𝐽(𝜑)�̇�+ ⌊𝜔⌋×𝑔(𝜑)]. (3.44)

This velocity is called the LO velocity because its integration is the body displacement[90].

However, the LO velocity is never used alone as an odometer because it is very noisy

[19] due to foot contacts. In this work we treat the LO velocity as a measurement

to estimate kinematic parameters.

3.3.11 Standard Single-IMU Proprioceptive Odometry

Let the robot’s state be 𝑥 = [𝑝;𝑣;𝜃; 𝑠1, . . . , 𝑠𝑗, . . . , 𝑠𝐿], where 𝑝 ∈ R3 is the robot

position in the world frame, 𝜃 is the robot’s orientation Tait-Bryan angles, and

𝑣 ∈ R3 is the linear velocity of the robot’s body represented in the world frame. For

𝑗 ∈ {1, . . . , 𝐿} where 𝐿 is the total number of legs of the robot, 𝑠𝑗 is the foot position

of leg 𝑗 represented in the world frame. For clarity, we will only discuss the case when

𝐿 = 1 in this section and drop the symbol 𝑗 from subsequent equations. The robot’s

57

sensors generate a number of measurements including IMU linear acceleration 𝑎𝑏,

IMU angular velocity 𝜔𝑏, joint angle 𝜑, joint-angle velocity �̇�, and 𝑐 which is a

binary contact flag with 𝑐 = 1 indicating foot contact.

Standard PO uses the EKF to estimate the state from a single IMU and the LO

velocity [14, 19]. The IMU is biased [127] and the LO velocity may also have a bias

due to leg kinematic parameter changes [163]. We do not address these biases in

this work, but they can be easily added to the EKF using well-known techniques to

improve the overall estimation accuracy [97].

The process model of standard PO is based on IMU kinematics. A discrete-time

dynamics update using Euler integration is presented in [14],

�̂�𝑘+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
�̂�𝑘+1

�̂�𝑘+1

�̂�𝑘+1

�̂�𝑘+1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
�̂�𝑘 +∆𝑡�̂�𝑘

�̂�𝑘 +∆𝑡(𝑅(�̂�𝑘)𝑎𝑏 − 𝑔𝑤)

�̂�𝑘 +∆𝑡(Ω(�̂�𝑘)𝜔𝑏)

�̂�𝑘

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.45)

where ∆𝑡 is the time interval between 𝑘 and 𝑘 + 1.

A common technique used in the literature is contact-based covariance scaling [14,

19]. Since we cannot update the foot position in the process model [19] during foot

swing, for the term corresponding to �̂� in 𝑛𝑘, we set its covariance 𝜎𝑠 to a large value

if 𝑐 = 0, and a small value otherwise:

𝜎𝑠 = 𝑐𝜎𝑐 + (1− 𝑐)𝜎𝑛. (3.46)

𝜎𝑐 and 𝜎𝑛 >> 𝜎𝑐 are all tunable hyperparameters. This technique works well in

practice, but it will increase the condition number of the covariance matrix, thus

reducing the stability of the filter [97].

58

We formulate the EKF measurement model following [14]. From sensor measure-

ments, a vector �̄�𝑘 is obtained as

�̄�𝑘 =

⎡⎣ 𝑔(𝜑)

−𝐽(𝜑)�̇�+ ⌊𝜔𝑏⌋×𝑔(𝜑)

⎤⎦ (3.47)

The measurement function ℎ(�̂�𝑘) is defined as

ℎ(�̂�𝑘) =

⎡⎣𝑅(�̂�𝑘)𝑇 (�̂�𝑘 − �̂�𝑘)
𝑅(�̂�𝑘)

𝑇 �̂�𝑘

⎤⎦ (3.48)

The first term of the residual �̄�𝑘 − ℎ(�̂�𝑘) indicates that the estimated body position

and foot position must differ by a distance equal to the leg forward kinematics

position. The second term ensures that the estimated robot body velocity matches

the LO velocity (3.44), which we refer to as a “zero-velocity” observation model.

Subsequently, we can utilize residuals from all legs in the EKF as shown in Algorithm

1. However, measurement residuals are only applicable for non-slipping standing

feet. Therefore, the noise covariance Σ𝑤 is adjusted based on the contact flag 𝑐 as in

equation (3.46) [19].

3.4 Technical Approach

The key idea underlying our technical approach to realize online calibration is to

treat the LO velocity (3.44) as a measurement of the robot body’s velocity that

is dependent on a set of kinematic parameters 𝜌 for each leg. We then append

𝜌 to the filter state. The dimension of 𝜌 depends on the kinematic structure of

the leg. For example, if we are estimating calf leg lengths of a quadruped robot,

59

𝜌 = [𝑙𝑐1; 𝑙𝑐2; 𝑙𝑐3; 𝑙𝑐4] ∈ R4, where 𝑙𝑐𝑖 is the calf length of leg 𝑖. If both the calf and the

thigh leg lengths need to be considered, then 𝜌 = [. . . , 𝑙𝑐𝑖; 𝑙𝑡𝑖, . . .], for 𝑖 = 1, 2, 3, 4,

has dimension 8. We also write 𝜌𝑖 to indicate the kinematic parameters related to

leg 𝑖.

3.4.1 Body Velocity Measurement Model

We modify (3.44) to explicitly include kinematics parameters and sensor noise. For

leg 𝑖, assuming the joint encoders on the leg measure joint angles 𝜑𝑖 and angular

velocities �̇�𝑖 with additive Gaussian noise Gaussian 𝑛𝜑 and 𝑛�̇�, repsectively, then

the true LO velocity in the world frame is

𝑣𝑚,𝑖 = −𝑅(𝑞)[𝐽(𝜑𝑖 − 𝑛𝜑,𝜌𝑖)(�̇�𝑖 − 𝑛�̇�)− ⌊𝜔⌋
×𝑔(𝜑𝑖 − 𝑛𝜑,𝜌𝑖)]. (3.49)

We also define an estimated LO velocity as

�̂�𝑚,𝑖 = −𝐴(�̂�)[𝐽(𝜑𝑖, �̂�𝑖)�̇�𝑖 − ⌊𝜔⌋×𝑔(𝜑𝑖, �̂�𝑖)]. (3.50)

When the leg 𝑖 has non-slipping contact with the ground, it contributes to a

measurement model

𝑧𝑙𝑒𝑔 = ℎ𝑙𝑒𝑔(�̂�,𝜔,𝜑, �̇�) + 𝑛𝑐 = �̂� −
∑︁
𝑖

𝑐𝑖�̂�𝑚,𝑖 + 𝑛𝑙(𝑛𝜑,𝑛�̇�) + 𝑛𝑐, (3.51)

where 𝑛𝑙 is a noise function related to joint encoder noise, which can be derived from

linearizing (3.49). We assume each foot of the legged robot has a contact detector

[19, 23] that generates a binary contact flag 𝑐𝑖. Therefore, 𝑐𝑖 = 1 means the foot has

nonzero velocity relative to the ground. Otherwise, the non-slipping assumption of

60

(3.50) is invalid. 𝑛𝑐 is a Gaussian measurement noise whose variance is a tunable

hyper-parameter.

3.4.2 Kalman Filter Kinematics Calibration

To achieve kinematics calibration using the error-state KF, we use a new process

dynamics model and add the body velocity measurement (3.51) to the measurement

model.

In the process dynamics, in addition to (3.36), (3.37), and (3.38), we model the

evolution of 𝛿𝜌 as a random-walk process,

𝛿𝜌𝑘+1 = 𝛿𝜌𝑘 + 𝑛𝜌, (3.52)

where 𝑛𝜌 is a Gaussian white noise.

For the measurement model, we calculate a measurement vector as 𝑧 = [𝑧𝑚𝑜𝑐𝑎𝑝; 𝑧𝑐𝑎𝑚; 𝑧𝑙𝑒𝑔],

where 𝑧𝑚𝑜𝑐𝑎𝑝 and 𝑧𝑐𝑎𝑚 are measurements from a motion-capture system or camera.

𝑧𝑙𝑒𝑔 is described in (3.51). The algorithm then proceeds as in Section 3.3.9.

3.4.3 Observability Analysis

Prior research has shown that robot pose and velocity are observable when the

measurement model contains information from a motion-capture system or camera

[73, 86]. Therefore, we only focus on the observability of the kinematics parameters

𝜌 in this section. We also note that our observability analysis applies to both EKF

and sliding-window estimators.

Neglecting sensor noise, the dynamics and observation model for a system with

61

only leg measurements can be written as,

�̇� = 𝑓𝑐(𝑥,𝑎,𝜔)

𝑧 = ℎ(𝑥,𝜑, �̇�),
(3.53)

where 𝑓𝑐 is the continuous state process dynamics (closely related to the error-state

dynamics (3.36), (3.37), and (3.38)); ℎ is the measurement model (3.51) considering

just a single leg; and 𝑎, 𝜔, 𝜑, and �̇� are IMU acceleration, IMU angular velocity, joint

angles, and joint angle velocities respectively. We then compute the observability

Gramian [26, 80]

𝒲(𝑥0) =

∫︁ 𝑇

0

Φ⊤(𝑡)𝐻⊤(𝑥𝑡)𝐻(𝑥𝑡)Φ(𝑡)d𝑡, (3.54)

where Φ(𝑡) is the state transition matrix associated with the linearized dynamics:

Φ̇(𝑡) = 𝐹𝑥(𝑥𝑡)Φ(𝑡), Φ(0) = 𝐼. (3.55)

If𝒲(𝑥0) is positive definite along the trajectory from 𝑥0 to 𝑥𝑇 , the system is locally

observable [80].

For the Unitree A1 quadruped, its important kinematic parameters are indicated

in Fig. 2-2. 𝑜𝑥, 𝑜𝑦 are offsets distances between the robot COM and leg base. 𝑑 is an

offset between motor 2 and 3. 𝑙𝑡 is the upper leg (thigh) length and 𝑙𝑐 is the lower

leg (calf) length. The analytical form of the forward kinematics function is provided

in the Appendix. Among these parameters, we may choose to calibrate 𝜌 = [𝑙𝑐] (just

the calf length) or 𝜌 = [𝑙𝑡; 𝑙𝑐] (both the calf and the thigh).

We analyze how parameter 𝜌 is related to the observability gramian by expanding

62

blocks in 𝒲(𝑥0) analytically. From (3.36), (3.37), (3.38), and (3.52), we get

𝐹𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐼 0 𝐼∆𝑡 0

0 𝐼 − ⌊𝜔∆𝑡⌋× 0 0

0 −𝑅(𝑞)⌊𝑎∆𝑡⌋× 𝐼 0

0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.56)

From (3.56) and (3.55), Φ(𝑡) is always in the form of

Φ(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐼 * * 0

0 * 0 0

0 * 𝐼 0

0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.57)

where “*”s are nonzero block terms that are not relevant to our discussion. We

linearize (3.51) to compute,

𝐻𝑙𝑒𝑔 =
[︁
0 𝐴(�̂�)⌊𝐽�̇�− ⌊𝜔⌋×𝑔⌋× 𝐼 −𝐴(�̂�)𝐷

]︁
, (3.58)

where,

𝐷 = (�̇�⊤ ⌢⊗ 𝐼3)
𝜕𝑣𝑒𝑐(𝐽(𝜑, �̂�))

𝜕�̂�
+ ⌊𝜔⌋×𝜕𝑔(𝜑, �̂�)

𝜕�̂�
, (3.59)

and the 𝑣𝑒𝑐(·) operator returns a column vector by stacking the columns of the input

matrix [94], and the ⌢⊗ is the Kronecker product [94].

Plugging (3.57) and (3.58) into (3.54), we can see the last block of the integrand

of 𝒲(𝑥0) is 𝐷⊤𝐷. Therefore, a sufficient condition for fully observable 𝜌 is the null

space of 𝐷 is empty or, equivalently, that 𝐷 has full column rank. An immediate

conclusion we can draw is 𝜔 and �̇� cannot both be zero, otherwise 𝐷 will become a

63

zero matrix. Therefore the robot cannot stand still or trot in place, since the joint

velocities of stance legs will be close to zero. The rank condition of 𝐷 also depends

on the forward kinematics function, which is problem specific since 𝑔(𝜑,𝜌) may have

different forms depending the robot leg structure. In the Appendix we show the

forward kinematics of the Unitree A1 robot and how to calculate 𝐷. When 𝜌 = [𝑙𝑐]

or 𝜌 = [𝑙𝑡; 𝑙𝑐], 𝐷 has full rank so 𝜌 is observable.

The observability analysis also suggests we trust the body velocity measurement

model less when 𝐷 is near singular. We change the covariance 𝜎𝑐 of the noise term

𝑛𝑐 in (3.51) to be related to the mean of singular values of 𝐷.

𝜎𝑐 = 𝜎0 +
𝛼1

1 + exp(𝛼2(𝑚𝑒𝑎𝑛(𝑆𝑉 𝐷(𝐷))− 𝛼3))
(3.60)

where 𝜎0 is a constant term, the second term is a logistic regressor [31] that assigns

large value to 𝐷 close to singular, which is equivalent to the local unobservablility

index (LUI) proposed in [80]. Thus we call it LUI noise. This noise function can

prevent parameter estimation fluctuation. We will study its effect in Section 3.5.

3.5 Experiments

All of our hardware and simulation experiments are based on a Unitree A1 [148]

robot. We first verify that the algorithm is able to converge to unbiased parameter

estimates in simulation. The simulated robot has the same leg structure as that on

the A1 robot, but kinematic parameter values are varied for testing. We then perform

hardware experiments on a real A1 to demonstrate the practical performance of the

algorithm. MATLAB implementations of the error-state KF and the sensor data we

64

Figure 3-2: Left: The simulated robot and environment landmark locations. Right:
In the simulation we focus on analyzing how state is estimated within one gait cycle,
during which the body shifts a small distance, feet stand on the ground without
moving, and joints change configuration accordingly.

collected are available on GitHub1.

3.5.1 Simulation

We implement a simulator in MATLAB to generate simulated sensor data. We as-

sume a periodic gait and known initial and final poses of the robot at the beginning

and end of each gait cycle. We also assume perfect contact knowledge so that, during

this gait cycle, contact feet have known fixed world positions. We use cubic Her-

mite splines, which are twice differentiable, to interpolate positions, and quaternion

SLERP [131] to interpolate orientations. Therefore, we can query the robot’s body

position, orientation, velocity, and acceleration at any time in the gait cycle. From

these quantities, we can calculate body-frame acceleration and angular velocities to
1https://github.com/ShuoYangRobotics/legged-kinematics-calibration

65

https://github.com/ShuoYangRobotics/legged-kinematics-calibration

0 0.05 0.1
0.19
0.2
0.21
0.22

Leg 1 (Front-left)

0 0.05 0.1
0.19
0.2
0.21
0.22

Leg 2 (Front-right)

0 0.05 0.1
0.19
0.2
0.21
0.22

Time (s)

Leg 3 (Rear-left)

0 0.05 0.1
0.19
0.2
0.21
0.22

Time (s)

Leg 4 (Rear-right)

Figure 3-3: The calf length estimation result using simulation data. 𝜌 = [𝑙𝑐]. In
all plots, blue lines are estimated length. Red dash lines show the 3𝜎 uncertainty
envelope. Black dash lines indicate the ground truth length 0.21𝑚 for reference. All
estimations converge to ground truth quickly with final errors < 0.01𝑚.

66

generate simulated IMU data. Additionally, by using inverse kinematics, we can

calculate the joint angles of a leg given a body position and a foot position. We

also include a camera based on the pin-hole model [52] to observe landmarks with

known locations in the environment. We generate camera observations by projecting

landmarks onto the camera image frame [86]. Finally we add random noise to all

simulated sensor data.

We run an error-state KF with the camera and the leg measurement models

on the simulated data. Fig. 3-3 shows the calf length estimation result for a 0.1s

body trajectory with a linear displacement of (0.1𝑚, 0.1𝑚, 0.05𝑚) and orientation

displacement of 5 degrees about the pitch, roll, and yaw axes. The KF state includes

robot body pose, velocity, and calf lengths 𝑙𝑐 of all legs. Even if the initial 𝑙𝑐 values

have large errors, the filter converges to ground truth values quickly with final errors

less than 0.01m. The detailed setup of the error-state KF can be seen in the open

source codebase.

3.5.2 Error-state KF Hardware Experiment

We test our calibration method using sensor data from an actual A1 robot. Its

sensors include one IMU, 12 joint encoders and 4 foot contact sensors. We implement

a MPC controller in C++ as explained in 2.3.2. The robot moves in an arena

equipped with an OptiTrack motion capture system, which provides high-quality

body pose data. Robot sensor data and motion-capture data with timestamps are

recorded as datasets. Although our filter can easily be run in real time, we perform all

experiments offline so that we can replay the sensor datasets and run the filter with

different settings. We refer interested readers to our open-source implementation for

implementation details.

67

9 10 11 12 13
0.1

0.15

0.2

Standing In-place trotting Moving forward

(a) Time (s)

Le
ng

th
(m

)

With LUI noise
W/o LUI noise

9 10 11 12 13
−0.2

0
0.2
0.4
0.6
0.8

Standing In-place trotting Moving forward

(b) Time (s)

X
V

el
oc

ity
(m

/s
)

Figure 3-4: (a) The calf length estimation for leg 1 during two calibration runs.
The green line comes from a filter that has the LUI noise term (3.60), while the
red line is generated by a filter does not have the term. Both filters have the same
other configurations. Black dash lines indicate time instances when the robot changes
behavior modes. During in-place trotting the red line drifts significantly. (b) Velocity
profile in each mode. The robot has small body velocity hence small joint angle
velocities when trotting. According to (3.59), the observability matrix is very close
to singular so the measurement update is inaccurate.

68

6 11 16 21 26 31
0.19

0.2

0.21

0.22

0.23

(a) Time (s)

Le
ng

th
(m

)
Leg1
Leg2
Leg3
Leg4

6 11 16 21 26 31
−1

−0.5

0

0.5

1

(b) Time (s)

V
el

oc
ity

(m
/s

)

Ground truth
KF w/o calib = 0.0041
KF with calib = 0.0038

6 11 16 21 26 31
−0.5

0.5

1.5

2.5

3.5

(c) Time (s)

P
os

it
io

n
(m

)

Ground truth
KF w/o calib = 0.0268
KF with calib = 0.0018

Figure 3-5: Results of a hardware dataset run. (a) Calibrated calf lengths of each
leg. The black dash line indicates the mean value of all lengths (0.2113m). (b)
The velocity estimations using either fixed or calibrated length do not differ much.
The mean square error (MSE) of them from the ground truth velocity are 0.0041
and 0.0038 respectively. (c) The KF with calibrated calf length has much smaller
position drift than the KF using fixed calf length. The MSEs from the ground truth
are 0.0018 and 0.0268 respectively.

69

Calibration During Standing Up

In the first experiment, we record data while the robot stands up from a crouched

pose. All feet are always in contact with the ground. The process is repeated for four

trials and four standing-up datasets are collected. We then run the error-state KF

with kinematics calibration on each dataset three times with different initial values

𝑙𝑐 = 0.1𝑚, 0.2𝑚, and 0.3𝑚. In Fig. 3-1c, we compare estimated values of 𝑙𝑐 against

time for each run on one dataset. In all three runs, the final value reaches around

0.21m after about 3s. This calibrated value is roughly consistent with the CAD

model value of 0.20m and the foot sensor head radius of 0.02m, and implies that

the soft, deformable foot is compressed to half of its original size under the robot’s

weight.

Calibration During Walking

We move the robot on flat ground to examine how kinematics calibration performs

during walking. We collect ten datasets with the robot moving at different speeds

and different total travel distances ranging from 5m to 15m. The calibration results

using one of the datasets is shown in Fig. 3-5a. Initially all leg calf lengths are set

to 0.2m. After the robot starts to walk, the leg length estimation fluctuates between

0.19m-0.23m, the range is larger than the longest possible leg length in CAD model

(0.22m). Comparing Fig. 3-5a, Fig. 3-5b, and the experiment videos, the maximum

leg length happens when the robot moves forward with relatively high speed, and

the robot feet have rolling contact with the ground. The rolling contact is equivalent

to a slightly longer leg with fixed point contact.

70

LUI Noise Ablation Study

In Section 3.4.3 we present an LUI noise term (3.60). In Figure 3-4 we show that,

without this term (red line), the calf-length estimation drifts quickly when the robot

is doing in-place trotting, since the observability matrix is poorly conditioned. When

the LUI noise term is included, the estimation does not change much, as expected.

Position Drift Reduction

We show that adding kinematics calibration to a baseline IMU and leg odometry

filter can dramatically reduce position estimation drift. Our baseline filter follows

Section 3.3.9, with the IMU driving the process model and leg odometry captured

by the measurement model (3.51). We also treat body orientation, as observed by

the motion-capture system, as a known quantity following [14]. The baseline filter

always uses a fixed leg length of 0.20𝑚 (referred to as “KF w/o calib” in the figure

legend). Fig. 3-5b and Fig. 3-5c compare the estimated X-direction velocity and

position using either fixed length or calibrated length shown in Fig. 3-5a. It can be

seen that the KF with calibrated leg length achieves an order of magnitude better

precision than that using fixed length. Table 3.1 summarizes the mean-squared error

in the position and velocity estimates, final position drifts, and maximum position

drifts across the ten datasets. The kinematics calibration significantly improves

position estimation accuracy in all cases by providing the estimator with time-varying

kinematic parameters.

71

w/o calib with calib Improvement
Vel MSE 0.0023 0.0022 4.3%
Pos MSE 0.0070 0.0016 77.1%

Max Pos Drift 15.0cm 6.2cm 58.6%
Final Pos Drift 7.1cm 4.1cm 42.3%

Table 3.1: The table shows the average peformance metrics of ten datasets and the
improvement of using calibrated length. Max pos drift is the maximum deviation of
estimated position from the ground truth. Final pos drift is the position deviation
at the end of the traveling trajectory.

3.6 Conclusion & Future Work

We have presented a method to calibrate kinematic parameters of legged robots

online. A detailed observability analysis, along with simulation and hardware exper-

iments, validate our method. Kinematics calibration of deformable leg lengths results

in more accurate body velocity estimation and, hence, significantly lower odometry

drift. The calibration method can be easily integrated into standard state estimator

formulations.

In future work, we will investigate kinematic parameter formulations that can

better capture rolling contacts. We will also research whether jointly estimating robot

states and kinematics parameters can achieve sub-centimeter calibration accuracy

and reduce long term position estimation drift using the optimization based state

estimator.

72

3.7 Appendix

The forward kinematics function 𝑔 of a leg of a Unitree A1 robot with 𝜑 = [𝜑1;𝜑2;𝜑3]

and 𝜌 = [𝑙𝑐] is

𝑔(𝜑,𝜌) =

⎡⎢⎢⎢⎣
𝑜𝑥 − 𝑙𝑐𝑠23 − 𝑙𝑡𝑠2

𝑜𝑦 + 𝑑𝑐1 + 𝑙𝑡𝑐2𝑠1 + 𝑙𝑐𝑠1𝑐23

𝑑𝑠1 − 𝑙𝑡𝑐1𝑐2 − 𝑙𝑐𝑐1𝑐23

⎤⎥⎥⎥⎦ , (3.61)

where 𝑠𝑖 denotes sin(𝜑𝑖) and 𝑐𝑖 = cos(𝜑𝑖), where 𝑖 = 1, 2. Also 𝑠23 = sin(𝜑2 + 𝜑3)

and 𝑐23 = cos(𝜑2 + 𝜑3). The expression is derived using the product of exponentials

(POE) method [103]. The Jacobian of 𝑔 is

𝐽(𝜑,𝜌) =⎡⎢⎢⎢⎣
0 −𝑙𝑐𝑐23 − 𝑙𝑡𝑐2 −𝑙𝑐𝑐23

𝑙𝑡𝑐1𝑐2 − 𝑑𝑠1 + 𝑙𝑐𝑐1𝑐23 −𝑠1(𝑙𝑐𝑠23 + 𝑙𝑡𝑠2) −𝑙𝑐𝑠23𝑠1
𝑙𝑡𝑐2𝑠1 + 𝑑𝑐1 + 𝑙𝑐𝑠1𝑐23 𝑐1(𝑙𝑐𝑠23 + 𝑙𝑡𝑠2) 𝑙𝑐𝑠23𝑐1

⎤⎥⎥⎥⎦ , (3.62)

It is easy to calculate their derivatives with respect to 𝜌 through symbolic com-

putation tools. And if we let �̇� = [�̇�1; �̇�2; �̇�3] and 𝜔 = [𝜔1;𝜔2;𝜔3], then

𝐷 =

⎡⎢⎢⎢⎣
−�̇�2𝑐23 − �̇�3𝑐23 − 𝜔2𝑐23𝑐1 − 𝜔3𝑐23𝑠1

�̇�1𝑐23𝑐1 − 𝜔3𝑠23 + 𝜔1𝑐23𝑐1 − �̇�2𝑠23𝑠1 − �̇�3𝑠23𝑠1

𝜔2𝑠23 + �̇�1𝑐23𝑠1 + �̇�2𝑠23𝑐1 + �̇�3𝑠23𝑐1 + 𝜔1𝑐23𝑠1

⎤⎥⎥⎥⎦ (3.63)

We can confirm 𝜌 is observable because when �̇� and 𝜔 are non-zero vectors, the

rank of 𝐷 is 1 regardless of the value of 𝜑. Then 𝐷⊤𝐷 is non-singular and the

observability gramian will always be positive definite, thus 𝜌 is observable. We can

do the same calculation for 𝜌 = [𝑙𝑡; 𝑙𝑐] and show that it is observable as well.

73

Chapter 4

Cerberus: Low-Drift

Visual-Inertial-Leg Odometry For

Agile Locomotion

In this chapter, we present an open-source Visual-Inertial-Leg Odometry (VILO)

state estimation solution for legged robots, called Cerberus, which precisely estimates

position on various terrains in real-time using a set of standard sensors, including

stereo cameras, IMU, joint encoders, and contact sensors. In addition to estimating

robot states, we perform online kinematic parameter calibration and outlier rejection

to substantially reduce position drift.

The VILO algorithm is based on the factor graph formulation of the state esti-

mation problem. A factor graph is a graphical representation of a state estimation

problem, where the nodes represent the state variables and the edges represent the

measurement models. The factor graph is a generalization of the Kalman filter, as

we will show in this chapter. Moreover, the factor graph leverages the sparsity of

74

the measurement models to achieve efficient computation, which closely resembles

the sparsity of the MPC problem. The next chapter will explore their connections

in more detail, while the basic knowledge of the factor graph is introduced in this

chapter.

4.1 Introduction

A sensor solution including only one pair of stereo cameras and critical proprioceptive

sensors (IMU, joint encoders, and foot contact sensors) serves as an ideal choice for

resource-constrained robots because this set of sensors is low cost, compact, and has

low power consumption [16]. We call a state estimator using this sensing solution

a Visual-Inertial-Leg Odometry (VILO) estimator. VILO fuses data from different

sensors by constructing observation models that predict measurements given robot

states. Observation models combined with a dynamics model of the robot form a

factor graph [36] describing a nonlinear optimization problem whose solution is the

maximum-likelihood state estimate. Prior work [54, 76, 158] has shown that VILO

outperforms methods that only utilize a subset of the aforementioned sensors, such

as Visual-Inertial-Odometry (VIO) [86] or Leg Odometry (LO) [24] alone.

A key feature of VIO estimators is online calibration of IMU biases using visual

measurements[44]. Other key error sources in VIO have recently been systematically

addressed [119]. However, in the VILO setting, systematic error analysis has yet to be

established for leg sensors (joint encoders and contact sensors). Prior work [17, 159]

and Chapter 3 have identified that when generating body velocity estimates using

LO, error sources such as foot slippages, impacts, rolling contacts, and kinematic

parameter errors could degrade velocity estimation accuracy. However, no prior

work has studied how to handle these error sources in a VILO estimator.

75

−60 −10 40 90 140
−55

−35

−15

5

25

45

65

85

Length (m)

Le
ng

th
(m

)

Position Estimation Results On “Track” Dataset

Ground truth
KF
VINS
VILO w/o calib
VILO with calib

Figure 4-1: On the A1 robot, the Cerberus algorithm has lower than 1% position
estimation drift after traveling 450m on standard stadium track, better than any
baseline methods and better than any drift performance reported in literature using
the same set of sensors. The ground truth is obtained using dimensions of standard
running track.

Since different legged robots have different leg configurations, locomotion strate-

gies, and sensor qualities, it is hard to fairly compare the performance of different

VILO implementations. An open-source baseline VILO implementation and public

datasets are needed for the benefit of the entire legged robot community.

As a first step toward establishing a standard VILO benchmark, we present a

state-of-the-art real-time VILO algorithm called Cerberus that incorporates kine-

matic calibration for improved accuracy, as well as several datasets from two differ-

ent quadruped robots. The algorithm implementation uses standard ROS interfaces

to process sensor data and publish estimation results, and the datasets are in the

76

format of ROS bags [137]. Docker [99] provides easy installation of a unified testing

environment. Our contributions are:

• Cerberus, a VILO algorithm that estimates kinematic parameters online to

achieve drift rates lower than any other results reported in the literature.

• Datasets collected on multiple robots in various indoor and outdoor environ-

ments to benchmark the Cerberus implementations.

• Open-source algorithm implementations using standard ROS interfaces that

can be readily adapted to different robots and sensor configurations.

This chapter is organized as follows. In Section 4.2 we review related work.

Section 4.3 introduces notation and provides background, we especially highlights

the connection between Kalman filter and the factor graph. Section 4.3.3 presents a

basic VILO algorithm. Section 4.4 derives an online kinematic calibration method

in the Cerberus. Section 4.5 describes details of the algorithm implementation and

presents hardware experiment results. Section 4.6 summarizes our conclusions.

4.2 Related Work

Many robots need to operate in GPS-denied environments use Visual odometry (VO)

[128], which estimates robot pose using a monocular or a stereo camera, can provide

a solution in these settings. By matching features across image sequences, feature

locations constrain the possible motion of the camera so displacement can be solved

from multiple-view geometry [52]. To improve the robustness and accuracy of the

estimation, VIO [86] uses both the camera and the IMU as motion constraints.

As we introduced in the previous chapter, Kalman filtering (KF) is widely used

in mobile robot and legged robot state estimation. Although KF is very efficient

77

and easy to implement for fusing single sensors such as IMU and leg odometry, it is

difficult to incorporate visual information. The drawback of KF is that it is based

on the Markov assumption, which means the current state only depends on the

previous state. However, a map point may be observed by the robot from multiple

poses, which breaks the Markov assumption. Some prior works tried to address this

problem by augmenting the KF state with a history of robot poses and map points

[102]. However, the number of map points is usually very large, which makes the

KF computationally expensive. Therefore, VIO solutions gradually shift from KF to

optimization-based methods.

The optimization-based VIO methods formulate the state estimation problem as

a nonlinear least-squares problem and solve it using Gauss-Newton or Levenberg-

Marquardt algorithms [108]. The factor graph formulation [36] is a popular way to

formulate the state estimation problem. In the factor graph, the nodes represent the

state variables and the edges represent the measurement models. Preintegration [44]

and inherent problem sparsity [36] can also help VIO to exploit problem structure,

hence reducing computation cost. Depending on how sensor measurements are used,

VIO has loosely-coupled or tightly-coupled approaches, which are two concepts used

in GPS/INS community [156] . In the loosely-coupled approach, different sensors

separately estimate the state. And then the estimations averaged to get the final

result. While in the tightly-coupled approach, one integrated model for all sensors

is designed.

After the development of several VIO algorithms [86, 118, 139], researchers con-

tinue to study how to reject different error sources in VIO including IMU biases,

sensor time delay, and extrinsic parameter errors [119]. The position drift percent-

age, measuring how many meters the estimation deviates from the ground truth after

traveling 100 meters, is often used as an important performance metric. Once the

78

error sources are properly addressed, position drift of a VIO estimator can be as low

as 0.29% on drones [118].

The factor graph formulation used in VIO can be easily extended to include the

LO motion constraint, which leads to the VILO estimator [54, 75, 158]. [158] uses the

velocity estimation result of a KF as the motion constraint. Contact preintegration is

developed in [54], but bias correction is not performed. [159] describes the LO velocity

bias and models it as a linear term that can be corrected in the preintegration.

However, this bias model does not explain the source of the bias and its physical

meaning. With the velocity bias model, [161] further shows that VILO can reach

around 1% position drift with the aid of lidar, though their VILO implementation

and datasets are not publicly available.

4.3 Background

We have extensively discussed the Kalman filter in the previous chapter. It’s con-

nection to the factor graph will be the focus of this section, which prepares for an

introduction to the sliding window estimation and visual inertial-leg odometry in the

coming sections.

4.3.1 An optimization view of state estimation

The KF can be viewed as an unconstrained optimization [58]. To show this, first, we

introduce a way to write a standard Kalman filter as an optimization problem, then

we show how this formulation naturally extends to more states and observations.

This optimization form can additionally estimate parameters other than the robot’s

physical state. We gave sensor delay estimation as an example.

79

Linear Kalman Filter

Recall the Error-state Kalman filter we explained in Section 3.3.9, its corresponding

linear form, if the system dynamics and observation are linear, is given as follows:

For system

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑣𝑘, 𝑣𝑘 ∼ 𝒩 (0, 𝑄) (4.1)

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑤𝑘, 𝑤𝑘 ∼ 𝒩 (0, 𝑅) (4.2)

As the standard Kalman filter procedure goes, given �̂�𝑘−1 and 𝑃𝑘−1 at time step

𝑘 − 1. At time step 𝑘 we receive a sensor measurement 𝑦𝑚, then we calculate

�̂�𝑘|𝑘−1 = 𝐹�̂�𝑘−1 (4.3a)

𝑃𝑘|𝑘−1 = 𝐹𝑃𝑘−1𝐹
𝑇 +𝑄 (4.3b)

𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻
𝑇 +𝑅 (4.3c)

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇𝑆−1 (4.3d)

�̂�𝑘 = �̂�𝑘|𝑘−1 +𝐾𝑘(𝑦𝑚 −𝐻�̂�𝑘) (4.3e)

𝑃𝑘 = (𝐼 −𝐾𝑘𝐻)𝑃𝑘|𝑘−1 (4.3f)

where �̂�𝑘 and 𝑃𝑘 are estimated posterior mean and covariance of the state [145].

It can be shown that Kalman filter steps show in (4.3) are equivalent to the fol-

lowing procedure [58]:

Given �̂�𝑘−1 and 𝑃𝑘−1 at time step 𝑘− 1. At time step 𝑘 we receive a sensor measure-

80

ment 𝑦𝑚, then we formulate

min
𝑥𝑘−1,𝑥𝑘

𝐽 = ‖𝑥𝑘−1 − �̂�𝑘−1‖2𝑃−1
𝑘−1

+ ‖𝑥𝑘 − 𝐹𝑥𝑘−1‖2𝑄−1 + ‖𝑦𝑚 −𝐻𝑥𝑘‖2𝑅−1

(4.4)

Solve for 𝑥*𝑘−1,𝑥*𝑘, where * stands for the minimizer of the above problem. We

also calculate the Hessian matrix [108] at the solution as

∇2𝐽 =

⎡⎣𝑃11 𝑃12

𝑃21 𝑃22

⎤⎦
Let

�̂�𝑘 = 𝑥*𝑘 (4.5)

𝑃𝑘 = (𝑃22 − 𝑃12𝑃
−1
11 𝑃21)

−1 (4.6)

The final �̂�𝑘 and 𝑃𝑘 gives the same posterior mean and covariance as the KF in

Eqn. (4.3f).

To prove this optimization is equivalent to the KF, it is straightforward to compute

and solve ∇𝐽 = 0 to see its equivalence to KF steps. The proof of Eqn (4.6) is more

involved, we write out the Hessian of Eqn (4.4) as

∇2𝐽 =

⎡⎣𝑃−1
𝑘−1 + 𝐹 𝑇𝑄−1𝐹 𝐹 𝑇𝑄−1

𝑄−1𝐹 𝑄−1 +𝐻𝑇𝑅−1𝐻

⎤⎦
This can be verified by expanding the 𝐽 and take derivative twice w.r.t [𝑥𝑘−1;𝑥𝑘].

81

Perform a Schur compliment according to Eqn (4.6), then

𝑃22 − 𝑃12𝑃
−1
11 𝑃21 =𝑄

−1 +𝐻𝑇𝑅−1𝐻 −𝑄−1𝐹 (𝑃−1
𝑘−1 + 𝐹 𝑇𝑄−1𝐹)−1𝐹 𝑇𝑄−1

=𝐻𝑇𝑅−1𝐻 + (𝑄+ 𝐹𝑃𝑘−1𝐹
𝑇)−1

The simplification step is done using the matrix inversion formula:

(𝐴−𝐵𝐷−1𝐶)−1 = 𝐴−1 + 𝐴−1𝐵(𝐷 − 𝐶𝐴−1𝐵)−1𝐶𝐴−1

On the other hand, inserting Eqn (4.3b) and Eqn (4.3d) into Eqn (4.3f), with applying

the matrix inversion formula again, one can see that

𝑃𝑘 = [(𝑄+ 𝐹𝑃𝑘−1𝐹
𝑇)−1 +𝐻𝑇𝑅−1𝐻]−1 = [𝑃22 − 𝑃12𝑃

−1
11 𝑃21]

−1 (4.7)

A deeper meaning of this result is, the hessian of the cost function at the solution

describes the joint distribution of 𝑥𝑘−1 and 𝑥𝑘 in the information matrix form as

𝑝(𝑥𝑘−1, 𝑥𝑘) ∼ 𝒩 (

⎡⎣𝑥*𝑘−1

𝑥*𝑘

⎤⎦ ,∇2𝐽−1). And Eqn (4.6) corresponds to marginalize 𝑥𝑘−1

out to get the posterior distribution of 𝑥𝑘 alone as 𝑝(𝑥𝑘|�̂�𝑘−1; 𝑦𝑚) ∼ 𝒩 (𝑥*𝑘, 𝑃
*
𝑘). In

the next iteration of the filter, this serves as a part of prior distribution of the next

state to estimate (𝑝(𝑥𝑘, 𝑥𝑘+1)).

It is worth visualizing terms in Problem (4.4) using the graphical model we in-

troduced in Section 2.3.2. As shown in Figure 4-2, where the correspondance is

self-explanatory. The most important thing to emphasis is a “factor” can be viewed

in two different ways, either a term in the cost function of an optimization problem,

or a Gaussian distribution. For example, ‖𝑥− �̂�‖2
𝑃−1 can be interpreted as that

• at the minimizer, 𝑥* must be as close to �̂� as possible, or

82

𝑥𝑘−1 𝑥𝑘

‖𝑥𝑘−1−�̂�𝑘−1‖2𝑃−1
𝑘−1

‖𝑦𝑚−𝐻𝑥𝑘‖2𝑅−1

‖𝑥𝑘 − 𝐹𝑥𝑘−1‖2𝑄−1

Figure 4-2: The graphical representation of a Kalman filter. The circles are esti-
mation states. The line segment with square represents the process dynamic model.
The unitary dot line is the prior information of the state distribution. And the line
segment with square is the measurement model. This graph follows the convention
of standard factor graphs [36], where all the circles are “nodes” and line segments are
“factors”.

• 𝑥 has a prior Gaussian distribution 𝒩 (�̂�, 𝑃).

Also Figure 4-3 describes the marginalization process to get the posterior distri-

bution. Using the factor graph jargon, the marginalization process is called “variable

elimination” [36]. We will differ a detailed explanation of the variable elimination

algorithm to the next chapter, here we want to emphasize that from Figure 4-2 to

Figure 4-3(a), we remove a node from the graph and add a new factor (red unitary

factor) to the graph, the new factor is the posterior distribution of 𝑥𝑘.

Sliding Window Estimation As A Factor Graph

The KF’s optimization counterpart (Problem (4.4)) makes it easy to think about

adding more states, which is called the sliding window estimation (SWE) [132] or

moving horizon estimation [2]: we keep track of 𝑝(𝑥𝑘−𝑀 , 𝑥𝑘−𝑀+1, . . . , 𝑥𝑘−1, 𝑥𝑘), solve

a similar optimization problem at each time step, marginalize one robot state and

add one more state.

More specifically, at time step 𝑘 − 1, we have �̂�𝑘−𝑀 :𝑘−1 and 𝑃𝑘−𝑀 :𝑘−1, the prior

83

𝑥𝑘−1 𝑥𝑘

‖𝑥𝑘 − �̂�*𝑘‖2𝑃 *−1
𝑘

(a)

𝑥𝑘 𝑥𝑘+1

‖𝑥𝑘− �̂�𝑘 ‖2𝑃−1
𝑘

‖ 𝑦′
𝑚 −𝐻𝑥𝑘+1‖2𝑅−1

‖𝑥𝑘+1 − 𝐹𝑥𝑘‖2𝑄−1

(b)

Figure 4-3: Top (a): Marginalize 𝑥𝑘−1 out of the joint distribution 𝑝(𝑥𝑘−1, 𝑥𝑘) to get
the posterior distribution of 𝑥𝑘 alone. The green arrow represents the Bayes net after
eliminating variable 𝑥𝑘−1 from the factor graph. The new red unitary factor is a new
factor results from the elimination process and represents the posterior distribution.
Bottom (b): Add the next state and construct a new Kalman filter problem.

84

distribution of a window of past 𝑀 robot states. We also have 𝑦𝑚 at time step 𝑘.

The sliding window estimation is as follows

min
𝑥𝑘−𝑀 :𝑘−1,𝑥𝑘

𝐽 = ‖𝑥𝑘−𝑀 :𝑘−1 − �̂�𝑘−𝑀 :𝑘−1‖2𝑃−1
𝑘−𝑀 :𝑘−1

+
𝑘−1∑︁

𝑖=𝑘−𝑀

‖𝑥𝑖+1 − 𝐹𝑥𝑖‖2𝑄−1 + ‖𝑦𝑚 −𝐻𝑥𝑘‖2𝑅−1

(4.8)

Solve the problem as a conventional unconstrained optimization problem to get the

optimal solution 𝑥*𝑘−𝑀 :𝑘−1,𝑥*𝑘. Like in Problem (4.4), again we can calculate the

Hessian matrix at the solution

∇2𝐽 =

⎡⎣𝑃11 𝑃12

𝑃21 𝑃22

⎤⎦ , where dim(𝑃11) = dim(𝑥𝑘−𝑀)

Then we conduct a marginalization or variable elimination process to get the Gaus-

sian posterior distribution of states 𝑥𝑘−𝑀+1:𝑘 as

�̂�𝑘−𝑀+1:𝑘 = 𝑥*𝑘−𝑀+1:𝑘

𝑃−1
𝑘−𝑀+1:𝑘 = 𝑃22 − 𝑃21𝑃

−1
11 𝑃12

The procedure also gives a recursive algorithm that allows real-time computation.

However, when 𝑀 and the dimension of the state are large, the Schur complement

will become very computationally intensive. We must exploit the problem sparsity

to speed up the computation. The factor graph formulation of this problem has

been explored in [63], where the factor graph and the variable elimination algorithm

make it easy to conduct sparse matrix operations for marginalization. The whole

prodecure is illustrated in Figure 4-4.

85

Figure 4-4: Top (a): The factor graph formulation of a SWE. Middle (b):
Marginalized the last state 𝑥𝑘−𝑀 . Bottom (c): Add a next state 𝑥𝑘+1.

86

We also want to note three things. First, the SWE is equivalent to the KF if

𝑀 = 1. Second, if we do not do marginalization at all but keep adding new states and

measurements into the window, then we get the Kalman smoother [25]. Lastly, for

nonlinear problems where cost terms involve nonlinear functions, we can iteratively

linearize the problem and solve the linearized version using the same formulation

until convergence.

4.3.2 Estimating Additional Parameters

The optimization view of the SWE make it easy to not only add more states but also

estimate different parameters. In Chapter 3 we have discussed how to estimate legged

robot kinematic parameters in a KF. It is not hard to see these additional parameters

fit into the optimization framework naturally as well. Similarly, parameters such

as transformations among sensors [73] and IMU biases [87] can also be estimated

together with other quantities as a part of the robot state.

However, there is another type of parameter that is more difficult, namely sensor

temporal offset. Figure 4-5 shows the definition of sensor temporal offset. In the

literature Temporal offset has been addressed with a few assumptions. If delay time

𝑡𝑑 is known, then simply calculate 𝑡𝑠 and recalculate the estimator from 𝑡𝑠 to the

current time [82]. If the delay time is not known and must be estimated but the sensor

has special properties, for example, Sensor 1 is a position sensor and we have velocity

estimation in the state, then the measurement from Sensor 1 can be shifted by the

current estimation of 𝑡𝑑 [87]. The most general setting is presented in [47] where

instead of shifting sensor measurement, the states are interpolated to the estimated

𝑡𝑠 to form an observation model in moving horizon estimation (an alternative name

to sliding window estimation). This method suits most types of sensors. However,

87

Sensor 1

Sensor 2

Figure 4-5: After receiving sensor data at time 𝑡𝑟, we search in the sliding window
backward to find states close to 𝑡𝑠 = 𝑡𝑟−𝑡𝑑 (𝑥𝑘−2 and 𝑥𝑘−1), then we do a cubic spline
interpolation between �̄�𝑘−2 and �̄�𝑘−1 to get an interpolated state 𝑥interp(𝑡𝑑, �̄�𝑘−2, �̄�𝑘−1).

the interpolation range needs to be constrained. In many applications, the temporal

offset may be unknown and changing. We only know a rough bound of the offset.

In SWE, assume the original estimation problem has state �̄�, we augment the

state to include an estimation of the offset time 𝑥 = [�̄�; 𝑡𝑑]. When we receive a Sensor

1’s measurement 𝑦𝑚 at time 𝑡𝑟, we can create an observation model by interpolating

states close to 𝑡𝑟 − 𝑡𝑑 to get an 𝑥interp, if our estimation of 𝑥 is accurate, then

𝑦𝑚 − ℎ(𝑥interp) should have a small value.

With the above observation model, we can write time offset estimation problem

as

min
𝑥𝑘−𝑀 :𝑘

𝐽 = ‖𝑥𝑘−𝑀 :𝑘−1 − �̂�𝑘−𝑀 :𝑘−1‖2𝑃−1
𝑘−𝑀 :𝑘−1

+
𝑘−1∑︁

𝑖=𝑘−𝑀

‖𝑥𝑖+1 − 𝑓(𝑥𝑖)‖2𝑄−1

+ ‖𝑦𝑚 − ℎ1(𝑥interp(𝑡𝑑, �̄�𝑘−2, �̄�𝑘−1))‖2𝑅−1
1

+ ‖𝑦′𝑚 − ℎ2(𝑥𝑘)‖2𝑅−1
2

s.t. 0 ≤ 𝑡𝑑 ≤ 𝑡𝑚𝑎𝑥

(4.9)

88

The 𝑦′𝑚 is the sensor measurement from sensor 2. ℎ1 and ℎ2 are sensor observation

function of the two sensors respectively.

This Problem (4.9) is a nonlinear constrained optimization problem. We can

iteratively linearize the problem and solve the linearized version, which is a quadratic

program with linear constraints.

4.3.3 Visual-Inertial-Leg Odometry

A typical VILO framework [54, 76, 159] keeps track of the estimation of a list of past

N states �̂�𝑘 and M camera feature locations �̂�𝑙 as 𝒳 = {�̂�0, �̂�1, . . . �̂�𝑁 , �̂�0, �̂�1, . . . �̂�𝑀}.

The robot state is �̂�𝑘 = [�̂�𝑘; �̂�𝑘; �̂�𝑘; �̂�𝑎𝑘; �̂�𝜔𝑘], where �̂�𝑘 ∈ R3 is the robot position in

the world frame, �̂�𝑘 is the robot’s orientation quaternion, and �̂�𝑘 ∈ R3 is the linear

velocity of the robot’s body represented in the world frame. �̂�𝑎𝑘 ∈ R3 and �̂�𝜔𝑘 ∈ R3

are IMU accelerometer bias and gyroscope bias. A new state �̂�𝑘 is created each

time 𝑡𝑘 when a new camera image arrives. Also, sensors on the robot generate

measurements 𝑍𝑡 = {�̂�𝑚(𝑡), �̂�𝑚(𝑡), �̂�𝑗(𝑡),
ˆ̇𝜑𝑗(𝑡)} and Λ𝑡 periodically, where �̂�𝑚 and

�̂�𝑚 are IMU linear acceleration and angular velocity, �̂�𝑗 and ˆ̇𝜑𝑗 are joint angle and

joint angle velocity for each leg 𝑗, and Λ𝑡 is a set of feature coordinates on the camera

images who have known associations with feature locations in 𝒳 . We denote 𝒵 as

all measurements between state �̂�0 and �̂�𝑁 . We also denote subsets 𝒳𝑠𝑢𝑏 ⊂ 𝒳 and

𝒵𝑠𝑢𝑏 ⊂ 𝒵. The VILO constructs a nonlinear least-squares problem to find 𝒳 as the

solution of

min
𝒳 *

{︂∑︁
𝑖

⃦⃦⃦⃦
𝑟𝑖(𝒳𝑠𝑢𝑏,𝒵𝑠𝑢𝑏)

⃦⃦⃦⃦2

𝑃𝑖

}︂
, (4.10)

where each term 𝑟𝑖(𝒳𝑠𝑢𝑏,𝒵𝑠𝑢𝑏) defines a measurement residual function. Ideally the

cost should be 0 at optimal solution 𝒳 *. 𝑃𝑖 is a weighting matrix that encodes the

89

Camera

Body IMU

Joint Encoder

Figure 4-6: The factor graph representation of a VILO. The green factors are related
to camera images, blue factors are formulated by IMU sensor data, red factors are
from leg kinematic parameters

relative uncertainty in each 𝑟𝑖, and also takes the same set of inputs. Problem (4.10)

can be solved by nonlinear optimization methods [36]. The core technical challenge

is to design cost functions and their uncertainties leveraging all available sensor data.

Figure 4-6 illustrates the factor graph formulation, which is obviously an SWE.

Additionally, a VILO estimator usually has other mechanisms to ensure real-time

computation, such as visual feature tracking and IMU preintegration. See [118, 158]

for more details. We will focus on talking about the preintegration in the next

section.

4.3.4 Preintegration

A key technique used in VIO and VILO to improve computation efficiency is prein-

tergration. When fusing camera data and IMU data with different frequencies, prein-

tegration [44] is used to integrate multiple IMU measurements between two camera

90

image times into a single “motion constraint” in the cost function, so the estimator

only needs to add states at the camera frequency instead of keeping up with the

much higher frequency of the IMU. More importantly, it is well known that IMUs

are biased [1], and biases should be estimated along with robot physical states.

When the estimator updates IMU biases, IMU preintegration can avoid integrating

measurements again by directly updating the integration term using its first order

approximation. IMU preintergration is used in several real-time VIO algorithms

[118, 139, 149]. Similarly, contact preintegration is used to integrate joint encoder

data into motion constraints in VILO [56].

We assume there are 𝐿 IMU measurements between state �̂�𝑘 and �̂�𝑘+1, and

that each IMU measurement arrives 𝛿𝑡 after the previous one. Let 𝑖 ∈ {1 . . . 𝐿}

be the measurement index and ∆𝑡 = 𝑡𝑘+1 − 𝑡𝑘, then 𝑡1 = 𝑡𝑘 and 𝑡𝐿 = 𝑡𝑘+1. As

shown in Figure 4-7, we can integrate these IMU measurements into a single motion

measurement.

First, let �̂�𝑘
𝑖 denote quaternion rotation from frame 𝑏𝑘 to frame 𝑏𝑖, the robot body

frame at time 𝑡𝑖. Starting from �̂�𝑘
𝑘 = 𝑞𝐼 , we can calculate

�̂�𝑘
𝑖+1 = 𝑅(

1

2

⎡⎣ 0

(�̂�𝑚(𝑡𝑖)− �̂�𝜔𝑘)𝛿𝑡

⎤⎦)�̂�𝑘
𝑖 , (4.11)

which recursively leads to �̂�𝑘
𝑘+1, a measurement of the rotation difference between �̂�𝑘

and �̂�𝑘+1. Another two recursive relations can be derived using acceleration data as

�̂�𝑘
𝑖+1 = �̂�

𝑘
𝑖 + �̂�

𝑘
𝑖 𝛿𝑡, and (4.12)

�̂�𝑘
𝑖+1 = �̂�

𝑘
𝑖 + 𝐴(�̂�𝑘

𝑖)(�̂�𝑚(𝑡𝑖)− �̂�𝑎𝑘)𝛿𝑡, (4.13)

91

camera

Form Motion Constraint

Form Optimization Within A Window of States

IMU
joint

Figure 4-7: Preintergation of IMU or joint measurements. The estimator adds a new
state whenever a new camera image arrives. Within the time interval ∆𝑡 between two
consecutive states, there are multiple other sensor measurements with a sub-interval
𝛿𝑡. We use 𝑘 to refer to estimator time indices and 𝑖 to indicate a measurement
within ∆𝑡. These measurements are integrated according to equations (4.12), (4.13),
(4.11), and (4.20), forming a motion constraint on states as in equation (4.14). The
VILO Problem (4.10) involves such motion constraints and other constraints due to
visual observations over a window of states.

such that �̂�𝑘
𝑘+1 and �̂�𝑘

𝑘+1 measure position and velocity differences between two

states. These so called preintegration terms [44] describe a cost function on states

as [118]

𝑟(�̂�𝑘, �̂�𝑘+1, 𝑍Δ𝑘) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴(�̂�𝑘)
𝑇 (�̂�𝑘+1 − �̂�𝑘 + 1

2
𝑔𝑤∆𝑡2 − �̂�𝑘∆𝑡)− �̂�𝑘

𝑘+1

Φ−1(�̂�−1
𝑘 ⊗ �̂�𝑘+1 ⊗ (�̂�𝑘

𝑘+1)
−1)

𝐴(�̂�𝑘)
𝑇 (�̂�𝑘+1 + 𝑔𝑤∆𝑡− �̂�𝑘)− �̂�𝑘

𝑘+1

�̂�𝑎𝑘+1 − �̂�𝑎𝑘
�̂�𝜔𝑘+1 − �̂�𝜔𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.14)

where 𝑍Δ𝑘 represents all measurements during ∆𝑡.

92

The error dynamics [118] of 𝑟 as

𝑒𝑖+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 𝐼𝛿𝑡 0 0 0

0 𝐼 −𝐴(�̂�𝑘
𝑖)⌊�̂�𝑚(𝑡𝑖)− �̂�𝑎𝑘⌋×𝛿𝑡−𝐴(�̂�𝑘

𝑖)𝛿𝑡 0

0 0 𝐼 − ⌊�̂�𝑚(𝑡𝑖)− �̂�𝜔𝑘⌋×𝛿𝑡 0 −𝐼𝛿𝑡

0 0 0 𝐼 0

0 0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑒𝑖

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

−𝐴(�̂�𝑏𝑘
𝑖)𝛿𝑡 0 0 0

0 −𝐼𝛿𝑡 0 0

0 0 𝐼𝛿𝑡 0

0 0 0 𝐼𝛿𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑛𝑎

𝑛𝜔

𝑛𝑏𝑎

𝑛𝑏𝜔

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝐹𝑖𝑒𝑖 +𝐺𝑖𝑛𝐼𝑀𝑈 , (4.15)

where 𝑛𝑎 and 𝑛𝜔 are IMU sensor measurement noises and 𝑛𝑏𝑎 and 𝑛𝑏𝜔 are random

walk noises for IMU biases. 𝑒𝑖 = [𝛿𝛼𝑘
𝑖 ; 𝛿𝛽

𝑘
𝑖 ; 𝛿𝜃

𝑘
𝑖 ; 𝛿𝑏𝑎𝑖; 𝛿𝑏𝜔𝑖] is a vector describing the

errors between preintegration terms and their “true” values after each IMU measure-

ment integration [118]. 𝛿𝛼𝑘
𝑖 = 𝛼𝑘

𝑖 − �̂�𝑘
𝑖 , 𝛿𝛽𝑘

𝑖 , and 𝛾𝑘
𝑖 = 𝐿(�̂�𝑘

𝑖)Φ(𝛿𝜃
𝑘
𝑖). Details of the

derivation can be seen in [118].

Let 𝑄 be the noise covairance matrix of 𝑛𝐼𝑀𝑈 . We can also recursively calculate

𝑃 𝑘
𝑘+1 and 𝐽𝑘+1, the error jacobian, as follows

𝑃 𝑘
𝑖+1 = 𝐹𝑖𝑃

𝑘
𝑖 𝐹

𝑇
𝑖 +𝐺𝑖𝑄𝐺

𝑇
𝑖 , 𝑃

𝑘
1 = 0, (4.16)

𝐽𝑖+1 = 𝐹𝑖𝐽𝑖, 𝐽𝑖 = 𝐼. (4.17)

The error jacobian can greatly reduce VILO computation time: When solving

Problem (4.10) using numerical methods, a solver iteratively calculates state update

93

Type & Model No. Freq. Output Description
D435 camera [64] 1 15Hz A pair of stereo images

Robot built-in IMU 1 500Hz Linear acceleration &
angular velocity

Robot built-in
joint encoder 12 500Hz Joint motor angles &

angle velocities
Robot built-in
contact sensor 4 500Hz Binary foot contact flag

Table 4.1: VILO Sensor List

vectors 𝛿𝑥, and the update will change IMU biases. Instead of reintegrating the

preintegration terms that depend on IMU biases, with the error jacobian, we can

directly update the preintegration terms, for example, as

𝛼𝑘
𝑘+1 = �̂�

𝑘
𝑘+1 + 𝐽𝛼

𝑎 𝛿𝑏𝑎 + 𝐽𝛼
𝜔 𝛿𝑏𝜔 (4.18)

to get their revised values, where 𝐽𝛼
𝑎 and 𝐽𝛼

𝜔 are blocks in 𝐽𝑘+1 that correspond to

𝜕𝛼/𝜕𝑏𝑎 and 𝜕𝛼/𝜕𝑏𝜔.

4.4 Kinematic Calibration In Preintegration

In this section we show, in the Cerberus, how to estimate 𝜌 for each leg discussed in

Chapter 3 by including them into the state so �̂�𝑘 = [�̂�𝑘; �̂�𝑘; �̂�𝑘; �̂�𝑎𝑘; �̂�𝜔𝑘; �̂�𝑗𝑘], where 𝑗

is the leg index. For brevity, we only describe the case 𝑗 = 1 but the algorithm can

easily apply to robots with more legs.

4.4.1 Contact Preintegration

For a leg that has non-slipping contact with the ground, (3.44) describes body veloc-

ity estimation through LO. This velocity can be integrated into a body displacement.

94

We again focus on integrating measurements between state �̂�𝑘 and �̂�𝑘+1 including

sensor data from leg sensors, then have a revised constraint equation

𝑟′(�̂�𝑘, �̂�𝑘+1, 𝑍Δ𝑘) =

⎡⎢⎢⎢⎣
𝑟(�̂�𝑘, �̂�𝑘+1, 𝑍Δ𝑘)

𝐴(�̂�𝑘)
𝑇 (�̂�𝑘+1 − �̂�𝑘)− �̂�𝑘𝑘+1

�̂�𝑘+1 − �̂�𝑘

⎤⎥⎥⎥⎦ , (4.19)

where �̂�𝑘𝑘+1 is the integration result of

�̂�𝑘𝑖+1 = �̂�
𝑘
𝑖 + 𝐴(�̂�𝑏𝑘

𝑖)�̂�𝑖𝛿𝑡, where (4.20)

�̂�𝑖 = −[𝐽(�̂�, �̂�) ˆ̇𝜑+ ⌊�̂� − b̂𝜔𝑘⌋×𝑔(�̂�, �̂�)]. (4.21)

Comparing to (4.14), (4.19) introduces the LO velocity integration as a measure-

ment model of body positions. The term �̂�𝑘𝑘+1 depends on sensor measurements, �̂�𝜔𝑘,

and �̂�𝑘. A version without kinematic parameter dependency is previously derived in

[54]. The error of this measurement, defined as 𝑒′𝑖 = [𝑒𝑖; 𝛿𝜖
𝑘
𝑖 ; 𝛿𝜌𝑖], has dynamics

𝑒′𝑖+1 =

⎡⎢⎢⎢⎣
𝐹𝑖 0

0 𝐼 −𝐴(�̂�𝑏𝑘
𝑖)⌊�̂�𝑖⌋×𝛿𝑡 0 𝜁𝛿𝑡 0 𝜅𝛿𝑡

0 0 0 0 0 0 0

⎤⎥⎥⎥⎦ 𝑒′𝑖

+

⎡⎢⎢⎢⎣
𝐺𝑖 0

0 𝜁𝛿𝑡 0 0 𝜂𝛿𝑡 𝐴(�̂�𝑏𝑘
𝑖)𝐽𝛿𝑡 𝐼𝛿𝑡 0

0 0 0 0 0 0 0 𝐼𝛿𝑡

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛𝐼𝑀𝑈

𝑛𝜑

𝑛�̇�

𝑛𝑣

𝑛𝜌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.22)

in which 𝐽 is short for 𝐽(𝜑, �̂�), the forward kinematics Jacobian. 𝑒𝑡, 𝑛𝑡, 𝐹𝑡, and

95

𝐺𝑡 are defined in 4.15. The definitions of 𝜁, 𝜂, and 𝜅, along with the derivation of

the error dynamics, are in the Appendix. 𝑛𝜑 ∼ 𝒩 (0, 𝜎2
𝜑) and 𝑛�̇� ∼ 𝒩 (0, 𝜎2

�̇�
) are

the measurement noise of joint angle and joint angle velocity. 𝑛𝜌 ∼ 𝒩 (0, 𝜎2
𝜌) is the

kinematic parameter random walk noise. 𝑛𝑣 ∼ 𝒩 (0, 𝜎2
𝑣) is the uncertainty of the

contact preintegration motion constraint.

From the error dynamics, we can get 𝑃 𝑘
𝑘+1 and 𝐽𝑘+1 as in (4.16) and (4.17).

Then Jacobians such as 𝐽 𝜖
𝜌 =

𝜕𝜖𝑘𝑘+1

𝜕𝜌
extracted from 𝐽𝑘

𝑘+1 can allow fast preintegration

updates:

𝜖𝑘𝑘+1 = �̂�
𝑘
𝑘+1 + 𝐽 𝜖

𝜔𝛿𝑏𝜔 + 𝐽 𝜖
𝜌𝛿𝜌. (4.23)

This technique is critical for enabling real-time computation of the Cerberus while

doing kinematic calibration.

4.5 Experiments

Our C++ implementation of the Cerberus uses the factor graph optimizer and vi-

sion front end of the open source visual-inertial odometry software VINS-Fusion [118].

The IMU factor in VINS-Fusion is replaced with our proposed cost function (4.19).

We set 𝜌 = [𝑙𝑐], the calf length shown in Fig. 2-2 as it is changing during locomotion

[163]. We conducted experiments on sensor data collected on two quadruped robot

platforms, the Unitree A1 and Go1 [148]. Both robots perform trotting using dif-

ferent controller implementations. The list of sensors that provide data to our state

estimator is summarized in Table 4.1.

We focus on comparing the position drift percentages of a Kalman Filter (KF)

[19], visual-inertial odometry (VINS) [118], visual-inertia-leg odometry without kine-

96

matics calibration (VILO w/o calib), and the Cerberus (VILO with calib). The

only difference between the last two is the VILO w/o calib just uses a fixed value

𝜌 = [0.21𝑚] while the Cerberus calibrates the kinematic parameters.

Before focusing on Cerberus, we explain two important parameter estimation

function of Cerberus individually.

4.5.1 Parameter Estimation

Kinematic Parameter

We also test our measurement model in the context of an optimization-based sliding-

window estimator. We add the kinematic parameters and the body velocity measure-

ment model (3.51) to the open-source VINS-Fusion [118], one of the most popular

sliding-window estimators. The modified estimator takes inputs from a single Intel

Realsense D435 camera and other legged robot proprioceptive sensors as measure-

ments. The total cost of the sensor hardware is less than $2000. We run the estimator

on the standing-up datasets. The kinematic calibration can be done quickly when

the robot stands up. Fig. 4-8 shows the estimated 𝑙𝑐 values of different runs with dif-

ferent initial calf length values. The final mean length value after the robot finished

standing up (6s-11s) is 0.215m, which agrees with the previous experiment using

motion-capture data. However, we observe larger variance with the sliding-window

estimator. We attribute this difference to the use of visual sensors, which are less

accurate than the motion capture system used in the EKF. This experimental result

confirms that we can perform kinematics calibration within an optimization-based

estimator using low-cost onboard sensors, while quantitative analysis remains future

work.

97

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

Time (s)

Le
ng

th
(m

)

Figure 4-8: The calf length calibration results using Cerberus. For each of the
four standing-up datasets, we run the estimator three times with different random
initial calf lengths. Each solid curve shows the estimated calf length of each run.
The horizontal dash reference line indicates 0.215m, the mean value of estimations
between 6s to 11s.

Temporal Parameter

We use SWE method to estimate robot states and sensor delay time for a simulated

robot as an example of explaining the temporal parameter estimation. As shown in

Figure 4-9, we simulate a planar robot that moves along a certain trajectory. The

robot has a position sensor and a velocity sensor that generates measurements at

4Hz and 20Hz. Without the knowledge of the robot dynamics, we just use a planar

constant velocity integration model to represent its system dynamics. If the sensor

data has no delay, linear KF can estimate the robot position easily. But delay in

position sensor data will make the KF estimation worse.

Figure 4-10 and Figure 4-11 show that, without prior knowledge of the delay

time, the RMSE (root mean square error) of the estimation using SWE is much

smaller than that using conventional KF. Also, the SWE can deal with unknown

and changing delays. As shown in Figure 4-11 right, even when the delay time is

increasing, the estimated delay time follows the trend of the actual time. The code

98

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

X position (m)

Y
po

si
ti

on
(m

)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

X position (m)

Y
po

si
ti

on
(m

)

Ground truth
KF w/o delay
KF with delay
Robust KF with delay

Figure 4-9: Left: simulated robot trajectory and sensor data. Right: If the position
sensor has no delay, the normal KF can estimate the robot trajectory very precisely
(red). However, if the position sensor data contains delays, the KF estimation result
is very bad (yellow). Even if we use outlier rejection in KF (purple), the result is
still not good compared to that has no delay.

implementation of this experiment is at https://github.com/ShuoYangRobotics/

MHE_delay_example.

4.5.2 Indoor Experiments

In a lab space equipped with an OptiTrack[112] motion-capture system, the robot

moves on flat ground following different paths with an average speed of 0.5m/s. We

record sensor data and ground-truth positions. We then run the Cerberus on a

desktop computer with Intel i7-7800X 3.50GHz CPU. The processing time is 50ms

per camera frame on average, which is faster than the camera sample rate (66ms).

Therefore, the state estimator should run in real time. Figure 4-12 compares the

ground truth trajectory (blue) with estimated trajectory using VINS (red), VILO

w/o calib (yellow), and VILO with calib (purple) in one dataset. Table 4.2 shows

average performance over 10 datasets.

99

https://github.com/ShuoYangRobotics/MHE_delay_example
https://github.com/ShuoYangRobotics/MHE_delay_example

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

X position (m)

Y
po

si
ti

on
(m

)

Ground truth
Linear KF - RMSE 4.015e-02
Robust KF - RMSE 4.173e-02
SWE - RMSE 2.570e-03

−0.5 0 0.5 1 1.5 2 2.5 3
−2

0

2

4

6

8

10

12

14

16

18

X position (m)

Y
po

si
ti

on
(m

)

Ground truth
Linear KF - RMSE 1.007e-01
Robust KF - RMSE 9.873e-02
SWE - RMSE 2.014e-03

Figure 4-10: We compare different estimators’ performance using the root mean
square error (RMSE) by comparing the estimated position trajectory with the ground
truth. Left and right figures show two different types of robot motion trajectories.

0 2 4 6 8 10 12 14 16 18 20 22 24
0.1

0.15

0.2

Time (s)

Se
ns

or
D

el
ay

T
im

e
(s

)

Ground truth

0 2 4 6 8 10 12 14 16 18 20 22 24

0.1

0.2

0.3

0.4

Time (s)

E
st

im
at

ed
D

el
ay

T
im

e
(s

)

Ground truth

Figure 4-11: Left: when the sensor delay time is constant. The estimation converges
to the correct time (0.2s). Results from three different runs with different sensor data
and initial delay time values are shown. Right: if the sensor delay time is changing,
the estimation keep track of the growing trend of the time. Also, the results of three
runs are shown.

100

0.9 1.9 2.9 3.9
−0.13
−0.03
0.07

0.17

0.27

(a) Length (m)

Le
ng

th
(m

)

0 10 20 30 40 50
0.05

0.15

0.25

0.35

0.45

(b) Time (s)

Z
H

ei
gh

t
(m

)

Ground Truth
VINS
VILO w/o calib
VILO with calib

Figure 4-12: Comparing with the mocap ground truth, VILO with calib has smaller
drift on all directions. The final drift of the VINS trajectory (red) is 1.73% while
the drift of the VILO w/o calib trajectory (yellow) is 1.25% and that of VILO with
calib (purple) is 1.13%.

101

20 25 30 35

Time (s)

-0.2

0

0.2

0.4
X

 V
e

lo
c
it
y
 (

m
/s

)
Ground Truth

LO

VIO

VILO+NoBiasCorrect

VILO+BiasCorrect

20 25 30 35

Time (s)

-0.5

0

0.5

Y
 V

e
lo

c
it
y
 (

m
/s

)

Ground Truth

LO

VIO

VILO+NoBiasCorrect

VILO+BiasCorrect

20 25 30 35

Time (s)

-0.2

0

0.2

Z
 V

e
lo

c
it
y
 (

m
/s

)

Ground Truth

LO

VIO

VILO+NoBiasCorrect

VILO+BiasCorrect

Figure 4-13: Linear velocity of the robot body on X,Y, and Z directions.

Figure 4-13 compares the velocities for one period in dataset 1. The LO velocity

is calculated according to [23]. It deviates from the ground truth a lot with rooted

mean-square error (RMSE) be (12.9, 16.7, 7.65) on each axis. The velocities esti-

mated by VIO, VILO, and VILO+BiasCorrect are all pretty close to the ground

truth. The RMSE of VILO+BiasCorrect velocity is (1.61, 2.83, 2.11) comparing to

that of VIO (1.85, 3.56, 2.68) and that of VILO (1.79, 2.79, 2.15).

4.5.3 Outdoor Experiments

The contribution of kinematics calibration to long-term position estimation is verified

in outdoor experiments. Two robots collected datasets in several outdoor environ-

ments while traveling over 1.5 km with an average velocity of 0.5 𝑚/𝑠. Note that

our robots move at a much faster speed than prior works (for example, [76] is 0.125

102

Dataset KF-PO VIO VILO
w/o calib Cerberus

Indoor
(average 10) 6.53% 1.31% 1.02% 0.92%

Street > 10% 0.89% 0.70% 0.85%
Track > 10% 3.9% 2.6% 0.98%

Campus > 10% break 3.32% 1.65%

Table 4.2: Hardware Experiment Final Drifts Comparison

𝑚/𝑠 and [161] is 0.25 𝑚/𝑠). In each dataset, the robot moves in a large loop and

we evaluate the final position estimation drift after the robot returns to the starting

point. We also note that 1% drift is equivalent to 0.1𝑚 of the 10M Relative Trans-

lation Error (RTE) metric used in [161] and [76]. Details of datasets can be found

in the open-source code base.

Figures 4-1, 4-14, and 4-15 compare the estimated trajectories for three datasets,

“Track”, “Campus”, and “Street”. Table 4.2 contains quantitative analysis of drift per-

centage for different datasets. The “Campus” dataset is particularly difficult because

the robot runs at over 1 𝑚/𝑠 on various indoor and outdoor terrains with different

slopes. See the supplementary video for its estimation run visualization and kine-

matic parameter estimation result. VILO with calib outperforms all other methods

across all datasets except for “Street”, where both methods have very small drift

values that have no statistically significant difference. Even though our datasets are

longer and contain faster and more challenging dynamics, the Cerberus algorithm

achieves < 1% drift on most of them and 1.65% drift on the hardest case. No prior

work has achieved this level of performance.

103

Figure 4-14: During the recording of the “Campus” dataset, the Go 1 robot ran 345
m with an average speed of 1 m/s in indoor and outdoor environments. VINS fails,
so no result is shown. VILO with calibration has the smallest final position drift
after returning to the starting point (red star).

104

−25 −5 15 35 55 75 95
−45

−25

−5

15

Length (m)
Le

ng
th

(m
)

Position Estimation Results On “Street” Dataset

GPS record
KF
VINS
VILO w/o calib
VILO with calib

Figure 4-15: Dataset “Street” algorithm run visualization and the estimation result.
GPS position reference is collected using iPhone App “Gaia GPS”. The final drift of
VILO with calib is 2.22m (0.85% after 260m travel) comparing to 1.84m of VILO
w/o calib.

4.5.4 Robust Estimation

Since the Cerberus combines various sensor sources, the position estimation is robust

against camera occlusion, foot slippage, and excessive body shakiness. The supple-

mentary video contains more challenging scenarios that demonstrate the robustness

of the estimator.

4.6 Conclusions

We have presented Cerberus, a VILO algorithm that uses kinematic calibration in

contact preintegration and contact outlier rejection to improve performance. Indoor

and outdoor experiments on two robots have demonstrated that our state estimator

outperforms many existing methods. We believe that kinematic parameter errors,

like IMU biases, should always be modeled and calibrated to achieve precise long-

105

term estimation for legged robots. Finally, our open-sourced Cerberus package can

serve as a baseline for future work.

4.7 Appendix

We present several important factors used in Ceberus’ factor graph.

4.7.1 Leg-IMU Factor Derivation

As defined in Section 4.4, the robot state is 𝑥𝑘 = [𝑝𝑤𝑏𝑘 , 𝑞
𝑤
𝑏𝑘
, 𝑣𝑤𝑏𝑘 , 𝑏𝑎𝑘, 𝑏𝑔𝑘, 𝑏𝑣𝑘, 𝜌2𝑘, 𝜌3𝑘, 𝜌4𝑘],

where 𝑝𝑤𝑏𝑘 , 𝑞
𝑤
𝑏𝑘

are the robot position and orientation (pose), 𝑣𝑤𝑏𝑘 is the robot COM

velocity in world frame. 𝑏𝑎𝑘, 𝑏𝑔𝑘 are the IMU biases. 𝑏𝑣𝑘 is the leg odometry velocity

bias. 𝜌𝑗𝑘 is the kinematic parameter of leg 𝑗.

Preintegration Terms

𝛼𝑘
𝑘+1 =

∫︁ ∫︁
𝑡∈[𝑡𝑘,𝑡𝑘+1]

𝑅𝑏𝑘
𝑡 (𝑎𝑚𝑡 − 𝑏𝑎𝑡 − 𝑛𝑎)𝑑𝑡

2 (4.24)

𝛽𝑘
𝑘+1 = �̇�𝑘

𝑘+1 =

∫︁
𝑡∈[𝑡𝑘,𝑡𝑘+1]

𝑅𝑏𝑘
𝑡 (𝑎𝑚𝑡 − 𝑏𝑎𝑡 − 𝑛𝑎)𝑑𝑡 (4.25)

𝛾𝑘𝑘+1 =

∫︁
𝑡∈[𝑡𝑘,𝑡𝑘+1]

𝛾𝑏𝑘𝑡
⨂︁ 1

2

⎡⎣ 0

(𝜔𝑚𝑡 − 𝑏𝑔𝑡 − 𝑛𝑔)𝑑𝑡

⎤⎦ (4.26)

𝜖𝑘𝑘+1 =

∫︁
𝑡∈[𝑡𝑘,𝑡𝑘+1]

𝑅𝑏𝑘
𝑡 (𝑣𝑚𝑡 − 𝑏𝑣𝑘 − 𝑛𝑣𝑡)𝑑𝑡 (4.27)

106

𝑣𝑚𝑡 =
∑︁
𝑗

𝑤𝑗/𝑊 * 𝑣𝑚𝑡,𝑗 (4.28)

=−
∑︁
𝑗

𝑤𝑗/𝑊 * [𝑅𝑏𝑟𝐽(𝜑𝑗𝑡 − 𝑛𝜑𝑡, 𝜌𝑗)(�̇�𝑗𝑡 − 𝑛𝜑𝑡)

+ (𝜔𝑚𝑡 − 𝑏𝑔𝑡 − 𝑛𝑔)× [𝑝𝑏𝑟 +𝑅𝑏𝑟𝑔(𝜑𝑗𝑡 − 𝑛𝜑𝑡, 𝜌𝑗)]]

Residual

𝑧𝑡 = [𝑎𝑚𝑡 , 𝜔𝑚𝑡 , 𝜑𝑗𝑡, �̇�𝑗𝑡, 𝑐𝑗𝑡] as the sensor measurements at time 𝑡 and 𝑍𝑘,𝑘+1 = {𝑧𝑡|𝑡 ∈

[𝑡𝑘, 𝑡𝑘+1]} be all sensor measurements between two time steps, we define the baseline

IMU-leg residual 𝑟 as (the dimension is 7× 3 + 4 = 25)

𝑟(𝑥𝑘,𝑥𝑘+1, 𝑍𝑘,𝑘+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅𝑏𝑘
𝑤 (𝑝𝑤𝑏𝑘+1

− 𝑝𝑤𝑏𝑘 +
1
2
𝑔𝑤∆𝑡2 − 𝑣𝑤𝑏𝑘∆𝑡)− 𝛼

𝑘
𝑘+1

log(𝑞𝑤
−1

𝑏𝑘

⨂︀
𝑞𝑤𝑏𝑘+1

⨂︀
𝛾𝑘

−1

𝑘+1)

𝑅𝑏𝑘
𝑤 (𝑣𝑤𝑏𝑘+1

+ 𝑔𝑤∆𝑡− 𝑣𝑤𝑏𝑘)− 𝛽
𝑘
𝑘+1

𝑅𝑏𝑘
𝑤 (𝑝𝑤𝑏𝑘+1

− 𝑝𝑤𝑏𝑘)− 𝜖
𝑘
𝑘+1,

𝑏𝑎𝑘+1 − 𝑏𝑎𝑘
𝑏𝑔𝑘+1 − 𝑏𝑔𝑘
𝑏𝑣𝑘+1 − 𝑏𝑣𝑘

𝜌𝑗𝑘+1 − 𝜌𝑗𝑘, for 𝑗 = 1, 2, 3, 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.29)

107

Continuos Time Error Dynamics

The eqs. (4.24) to (4.27) are the results of an ideal integration process. On real

system we can only get estimated result because the noise terms are unkown

�̂�𝑘
𝑘+1 =

∫︁ ∫︁
𝑡∈[𝑡𝑘,𝑡𝑘+1]

�̂�𝑏𝑘
𝑡 (𝑎𝑚𝑡 − �̂�𝑎𝑡)𝑑𝑡2

𝛽𝑘
𝑘+1 =

˙̂𝛼𝑘
𝑘+1 =

∫︁
𝑡∈[𝑡𝑘,𝑡𝑘+1]

�̂�𝑏𝑘
𝑡 (𝑎𝑚𝑡 − �̂�𝑎𝑡)𝑑𝑡

𝛾𝑘𝑘+1 =

∫︁
𝑡∈[𝑡𝑘,𝑡𝑘+1]

𝛾𝑏𝑘𝑡
⨂︁ 1

2

⎡⎣ 0

(𝜔𝑚𝑡 − �̂�𝑔𝑡)𝑑𝑡

⎤⎦
𝜖𝑘𝑘+1 =

∫︁
𝑡∈[𝑡𝑘,𝑡𝑘+1]

�̂�𝑏𝑘
𝑡 (𝑣𝑚𝑡 − �̂�𝑣𝑡)𝑑𝑡

where

𝑣𝑚𝑡 =
∑︁
𝑗

𝑤𝑗/𝑊*𝑣𝑚𝑡,𝑗 = −
∑︁
𝑗

𝑤𝑗/𝑊*[𝑅𝑏𝑟𝐽(𝜑𝑗𝑡, 𝜌𝑗)(�̇�𝑗𝑡)+(𝜔𝑚𝑡−�̂�𝑔𝑡)×[𝑝𝑏𝑟+𝑅𝑏𝑟𝑔(𝜑𝑗𝑡, 𝜌𝑗)]]

(4.30)

The 𝑣𝑚𝑡,𝑗 can be simplified as

𝑣𝑚𝑡,𝑗 =−𝑅𝑏𝑟𝐽(𝜑− 𝑛𝜑, 𝜌)(�̇�− 𝑛�̇�)− (𝜔𝑚𝑡 − 𝑏𝑔𝑡 − 𝑛𝑔)× [𝑝𝑏𝑟 +𝑅𝑏𝑟𝑔(𝜑− 𝑛𝜑, 𝜌)]

=−𝑅𝑏𝑟𝐽(𝜑, 𝜌)(�̇�− 𝑛�̇�) +𝑅𝑏𝑟(�̇�
𝑇 ⌢⊗ 𝐼3)

𝜕𝑣𝑒𝑐(𝐽(𝜑, 𝜌))

𝜕𝜑
𝑛𝜑

− (𝜔𝑚𝑡 − 𝑏𝑔𝑡 − 𝑛𝑔)× [𝑝𝑏𝑟 +𝑅𝑏𝑟(𝑔(𝜑, 𝜌)− 𝐽(𝜑, 𝜌)𝑛𝜑)]

=−𝑅𝑏𝑟𝐽(𝜑, 𝜌)�̇�− (𝜔𝑚𝑡 − 𝑏𝑔𝑡)× [𝑝𝑏𝑟 +𝑅𝑏𝑟𝑔(𝜑, 𝜌)]

− ⌊𝑝𝑏𝑟 +𝑅𝑏𝑟𝑔(𝜑, 𝜌)⌋×𝑛𝑔 +𝑅𝑏𝑟𝐽(𝜑, 𝜌)𝑛�̇�

+𝑅𝑏𝑟(�̇�
𝑇 ⌢⊗ 𝐼3)

𝜕𝑣𝑒𝑐(𝐽(𝜑, 𝜌))

𝜕𝜑
𝑛𝜑 + ⌊𝜔𝑚𝑡 − 𝑏𝑔𝑡⌋×𝑅𝑏𝑟𝐽(𝜑, 𝜌)𝑛𝜑

=−𝑅𝑏𝑟𝐽(𝜑, 𝜌)�̇�− (𝜔𝑚𝑡 − 𝑏𝑔𝑡)× [𝑝𝑏𝑟 +𝑅𝑏𝑟𝑔(𝜑, 𝜌)] + 𝑛𝑙𝑡,𝑗

108

where

𝑛𝑙𝑡,𝑗 = −⌊𝑝𝑏𝑟+𝑅𝑏𝑟𝑔(𝜑, 𝜌)⌋×𝑛𝑔+𝑅𝑏𝑟𝐽(𝜑, 𝜌)𝑛�̇�+𝑅𝑏𝑟(�̇�
𝑇 ⌢⊗𝐼3)

𝜕𝑣𝑒𝑐(𝐽(𝜑, 𝜌))

𝜕𝜑
𝑛𝜑+⌊𝜔𝑚𝑡−𝑏𝑔𝑡⌋×𝑅𝑏𝑟𝐽(𝜑, 𝜌)𝑛𝜑

Define

𝜅1 = (�̇�𝑇 ⌢⊗ 𝐼3)
𝜕𝑣𝑒𝑐(𝐽(𝜑, 𝜌))

𝜕𝜑

𝜅2 = (�̇�𝑇 ⌢⊗ 𝐼3)
𝜕𝑣𝑒𝑐(𝐽(𝜑, 𝜌))

𝜕𝜌

Also notice 𝑏𝑔𝑡 = �̂�𝑔𝑡 + 𝛿𝑏𝑔𝑡, 𝜌 = 𝜌 + 𝛿𝜌, and define 𝑔𝑏𝑗 = 𝑝𝑏𝑟 + 𝑅𝑏𝑟𝑔𝑗(𝜑𝑗, 𝜌) and

𝑔𝑏𝑗 = 𝑝𝑏𝑟 +𝑅𝑏𝑟𝑔𝑗(𝜑𝑗, 𝜌) (𝑔𝑏𝑗 = 𝑔𝑏𝑗 +𝑅𝑏𝑟
𝜕𝑔(𝜑,𝜌)

𝜕𝜌
𝛿𝜌), so

𝑣𝑚𝑡,𝑗 =𝑣𝑚𝑡,𝑗 −𝑅𝑏𝑟𝜅2𝛿𝜌− ⌊𝑔𝑏𝑗⌋×𝛿𝑏𝑔 − ⌊𝜔𝑚𝑡 − �̂�𝑔𝑡⌋×𝑅𝑏𝑟
𝜕𝑔(𝜑, 𝜌)

𝜕𝜌
𝛿𝜌+ 𝑛𝑙𝑡,𝑗

Define

𝜅3 = 𝑅𝑏𝑟𝜅2 + ⌊𝜔𝑚𝑡 − �̂�𝑔𝑡⌋×𝑅𝑏𝑟
𝜕𝑔(𝜑, 𝜌)

𝜕𝜌

So we have

𝑣𝑚𝑡 = 𝑣𝑚𝑡 +
∑︁
𝑗

𝑤𝑗

𝑊
𝑛𝑙𝑡,𝑗 − {

∑︁
𝑗

𝑤𝑗

𝑊
⌊𝑔𝑏𝑗⌋×}𝛿𝑏𝑔𝑡 (4.31)

− {
∑︁
𝑗

𝑤𝑗

𝑊
𝜅3𝛿𝜌𝑗} (4.32)

We notice

𝑅𝑏𝑘
𝑡 = �̂�𝑏𝑘

𝑡 (𝐼 + ⌊𝛿𝜃⌋×)

109

Derive error dynamics

𝛿�̇�𝑘𝑘+1 =�̇�
𝑘
𝑘+1 − ˙̂𝜖𝑘𝑘+1 = 𝑅𝑏𝑘

𝑡 (𝑣𝑚𝑡 − 𝑏𝑣𝑘 − 𝑛𝑣𝑡)− �̂�𝑏𝑘
𝑡 (𝑣𝑚𝑡 − �̂�𝑣𝑡) (4.33)

=�̂�𝑏𝑘
𝑡 (𝐼 + ⌊𝛿𝜃⌋×)𝑣𝑚𝑡 − �̂�

𝑏𝑘
𝑡 (𝐼 + ⌊𝛿𝜃⌋×)𝑏𝑣𝑘 − �̂�𝑏𝑘

𝑡 (𝐼 + ⌊𝛿𝜃⌋×)𝑛𝑣𝑡 − �̂�𝑏𝑘
𝑡 𝑣𝑚𝑡 + �̂�𝑏𝑘

𝑡 �̂�𝑣𝑡

=�̂�𝑏𝑘
𝑡 𝑣𝑚𝑡 − �̂�

𝑏𝑘
𝑡 ⌊𝑣𝑚𝑡⌋×𝛿𝜃 − �̂�

𝑏𝑘
𝑡 𝑏𝑣𝑘 + �̂�𝑏𝑘

𝑡 ⌊𝑏𝑣𝑘⌋×𝛿𝜃 − �̂�
𝑏𝑘
𝑡 𝑛𝑣𝑡

− �̂�𝑏𝑘
𝑡 𝑣𝑚𝑡 + �̂�𝑏𝑘

𝑡 �̂�𝑣𝑡

=�̂�𝑏𝑘
𝑡 (

∑︁
𝑗

𝑤𝑗

𝑊
𝑛𝑙𝑡,𝑗 − {

∑︁
𝑗

𝑤𝑗

𝑊
⌊𝑔𝑏𝑗⌋×}𝛿𝑏𝑔𝑡 − {

∑︁
𝑗

𝑤𝑗

𝑊
𝜅3𝛿𝜌𝑗}) (4.34)

−�̂�𝑏𝑘
𝑡 ⌊𝑣𝑚𝑡 − �̂�𝑣𝑘⌋×𝛿𝜃 − �̂�

𝑏𝑘
𝑡 𝛿𝑏𝑣𝑘 − �̂�

𝑏𝑘
𝑡 𝑛𝑣𝑡

Define

𝜅4 = 𝑅𝑏𝑟𝜅1 + ⌊𝜔𝑚𝑡 − 𝑏𝑔𝑡⌋×𝑅𝑏𝑟𝐽(𝜑, 𝜌)

then

𝑛𝑙𝑡,𝑗 = −⌊𝑔𝑏𝑗⌋×𝑛𝑔 +𝑅𝑏𝑟𝐽(𝜑, 𝜌)𝑛�̇� + 𝜅4𝑛𝜑

We can drop the term �̂�𝑏𝑘
𝑡 for all noise term.

𝛿�̇�𝑘𝑘+1 =
∑︁
𝑗

𝑤𝑗

𝑊
𝑛𝑙𝑡,𝑗 − �̂�𝑏𝑘

𝑡 {
∑︁
𝑗

𝑤𝑗

𝑊
⌊𝑔𝑏𝑗⌋×}𝛿𝑏𝑔𝑡 − {�̂�𝑏𝑘

𝑡

∑︁
𝑗

𝑤𝑗

𝑊
𝜅3𝛿𝜌𝑗} (4.35)

−�̂�𝑏𝑘
𝑡 ⌊𝑣𝑚𝑡 − �̂�𝑣𝑘⌋×𝛿𝜃 − �̂�

𝑏𝑘
𝑡 𝛿𝑏𝑣𝑘 − 𝑛𝑣𝑡

=− �̂�𝑏𝑘
𝑡 ⌊𝑣𝑚𝑡 − �̂�𝑣𝑘⌋×𝛿𝜃 − �̂�

𝑏𝑘
𝑡 {

∑︁
𝑗

𝑤𝑗

𝑊
⌊𝑔𝑏𝑗⌋×}𝛿𝑏𝑔𝑡

− �̂�𝑏𝑘
𝑡 𝛿𝑏𝑣𝑘 − {�̂�

𝑏𝑘
𝑡

∑︁
𝑗

𝑤𝑗

𝑊
𝜅3𝛿𝜌𝑗}

−
∑︁
𝑗

𝑤𝑗

𝑊
⌊𝑔𝑏𝑗⌋×𝑛𝑔 +

∑︁
𝑗

𝑤𝑗

𝑊
𝑅𝑏𝑟𝐽(𝜑, 𝜌)𝑛�̇� +

∑︁
𝑗

𝑤𝑗

𝑊
𝜅4𝑛𝜑 − 𝑛𝑣𝑡 (4.36)

110

4.7.2 Midpoint Method Discretize Dynamics

To improve numerical conditions of dynamics terms, we use the midpoint method to

rewrite discretized dynamics in the previous section as follows.

𝛿𝜃

𝛿𝜃𝑖+1 =𝜅9𝛿𝜃𝑖 −
𝛿𝑡

2
𝑛𝑔𝑖 −

𝛿𝑡

2
𝑛𝑔𝑖+1 − 𝛿𝑡𝛿𝑏𝑔𝑡 (4.37)

𝜅9 = [𝐼 − ⌊𝜔𝑚𝑖+1 + 𝜔𝑚𝑖

2
− �̂�𝑔𝑘⌋×𝛿𝑡]

𝛿𝛽

𝛿𝛽𝑖+1 = 𝛿𝛽𝑖 + 𝜅5𝛿𝜃𝑖 −
𝛿𝑡

2
(�̂�𝑏𝑘

𝑖+1 + �̂�𝑏𝑘
𝑖)𝛿𝑏𝑎𝑡 + 𝜅6𝛿𝑏𝑔𝑡 −

𝛿𝑡

2
(�̂�𝑏𝑘

𝑖 𝑛𝑎𝑖 + �̂�𝑏𝑘
𝑖+1𝑛𝑎𝑖+1) + 𝜅7(𝑛𝑔𝑖 + 𝑛𝑔𝑖+1)

(4.38)

where

𝜅5 = −
𝛿𝑡

2
�̂�𝑏𝑘

𝑖 ⌊𝑎𝑚𝑖
− �̂�𝑎𝑡⌋× −

𝛿𝑡

2
�̂�𝑏𝑘

𝑖+1⌊𝑎𝑚𝑖+1
− �̂�𝑎𝑡⌋×[𝐼 − ⌊

𝜔𝑚𝑖+1 + 𝜔𝑚𝑖

2
− �̂�𝑔𝑘⌋×𝛿𝑡]

𝜅6 =
𝛿𝑡2

2
�̂�𝑏𝑘

𝑖+1⌊𝑎𝑚𝑖+1
− �̂�𝑎𝑡⌋×

𝜅7 =
𝛿𝑡2

4
�̂�𝑏𝑘

𝑖+1⌊𝑎𝑚𝑖+1
− �̂�𝑎𝑡⌋×

111

𝛿𝛼

𝛿𝛼𝑖+1 = 𝛿𝛼𝑖 + 𝛿𝑡𝛿𝛽𝑖 +
𝛿𝑡

2
𝜅5𝛿𝜃𝑖 −

𝛿𝑡2

4
(�̂�𝑏𝑘

𝑖+1 + �̂�𝑏𝑘
𝑖)𝛿𝑏𝑎𝑡

+
𝛿𝑡

2
𝜅6𝛿𝑏𝑔𝑡 −

𝛿𝑡2

4
(�̂�𝑏𝑘

𝑖 𝑛𝑎𝑖 + �̂�𝑏𝑘
𝑖+1𝑛𝑎𝑖+1) +

𝛿𝑡

2
𝜅7(𝑛𝑔𝑖 + 𝑛𝑔𝑖+1)

𝛿𝜖

Finally, the discretization of (4.36) is

𝛿𝜖𝑖+1,𝑗 = 𝛿𝜖𝑖,𝑗+

𝜅8𝛿𝜃𝑖 +
𝛿𝑡2

4
�̂�𝑏𝑘,𝑖+1

𝑡 ⌊𝑣𝑚𝑡,𝑖+1 − �̂�𝑣𝑘⌋×(𝑛𝑔𝑖 + 𝑛𝑔𝑖+1) +
𝛿𝑡2

2
�̂�𝑏𝑘,𝑖+1

𝑡 ⌊𝑣𝑚𝑡,𝑖+1 − �̂�𝑣𝑘⌋×𝛿𝑏𝑔𝑡

− 𝛿𝑡

2
�̂�𝑏𝑘,𝑖

𝑡 {
∑︁
𝑗

𝑤𝑗,𝑖

𝑊
⌊𝑔𝑏𝑗,𝑖⌋×}𝛿𝑏𝑔𝑡 −

𝛿𝑡

2
�̂�𝑏𝑘,𝑖

𝑡 𝛿𝑏𝑣𝑘 −
𝛿𝑡

2
{�̂�𝑏𝑘,𝑖

𝑡

∑︁
𝑗

𝑤𝑗,𝑖

𝑊
𝜅3,𝑖𝛿𝜌𝑗}

− 𝛿𝑡

2
�̂�𝑏𝑘,𝑖+1

𝑡 {
∑︁
𝑗

𝑤𝑗,𝑖+1

𝑊
⌊𝑔𝑏𝑗,𝑖+1⌋×}𝛿𝑏𝑔𝑡 −

𝛿𝑡

2
�̂�𝑏𝑘,𝑖+1

𝑡 𝛿𝑏𝑣𝑘 −
𝛿𝑡

2
{�̂�𝑏𝑘,𝑖+1

𝑡

∑︁
𝑗

𝑤𝑗,𝑖+1

𝑊
𝜅3,𝑖+1𝛿𝜌𝑗}

− 𝛿𝑡

2

∑︁
𝑗

𝑤𝑗,𝑖

𝑊
⌊𝑔𝑏𝑗,𝑖⌋×𝑛𝑔 +

𝛿𝑡

2

∑︁
𝑗

𝑤𝑗,𝑖

𝑊
𝑅𝑏𝑟𝐽(𝜑, 𝜌)𝑛�̇� +

𝛿𝑡

2

∑︁
𝑗

𝑤𝑗,𝑖

𝑊
𝜅4,𝑖𝑛𝜑 −

𝛿𝑡

2
𝑛𝑣𝑡,𝑖

− 𝛿𝑡

2

∑︁
𝑗

𝑤𝑗,𝑖+1

𝑊
⌊𝑔𝑏𝑗,𝑖+1⌋×𝑛𝑔 +

𝛿𝑡

2

∑︁
𝑗

𝑤𝑗,𝑖+1

𝑊
𝑅𝑏𝑟𝐽(𝜑, 𝜌)𝑛�̇� +

𝛿𝑡

2

∑︁
𝑗

𝑤𝑗,𝑖+1

𝑊
𝜅4,𝑖+1𝑛𝜑 −

𝛿𝑡

2
𝑛𝑣𝑡,𝑖+1

𝜅8 = −
𝛿𝑡

2
�̂�𝑏𝑘

𝑖 ⌊𝑣𝑚𝑖
− �̂�𝑣𝑘⌋× −

𝛿𝑡

2
�̂�𝑏𝑘

𝑖+1⌊𝑣𝑚𝑖+1
− �̂�𝑣𝑘⌋×[𝐼 − ⌊

𝜔𝑚𝑖+1 + 𝜔𝑚𝑖

2
− �̂�𝑔𝑘⌋×𝛿𝑡]

4.7.3 Error dynamics equation

The discretized error dynamics is

112

𝛿𝐸𝑘
𝑡+𝛿𝑡 = 𝐹𝑖𝛿𝐸

𝑘
𝑡 +𝐺𝑖𝑛𝑡 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 𝛿𝑡
2
𝜅5 𝛿𝑡 0 − 𝛿𝑡2

4
(�̂�𝑏𝑘

𝑖+1 + �̂�𝑏𝑘
𝑖) 0 0 0 0 0 0

0 𝜅9 0 0 0 −𝛿𝑡 0 0 0 0 0

0 𝜅5 𝐼 0 − 𝛿𝑡
2
(�̂�𝑏𝑘

𝑖+1 + �̂�𝑏𝑘
𝑖) 𝜅6 0 0 0 0 0

0 𝜅8 0 𝐼 0 𝜅10 − 𝛿𝑡
2
(�̂�𝑏𝑘

𝑖+1 + �̂�𝑏𝑘
𝑖) − 𝛿𝑡

2
(�̂�𝑏𝑘

𝑖+1
𝑤1,𝑖+1

𝑊
𝜅3,𝑖+1 + �̂�𝑏𝑘

𝑖
𝑤1,𝑖

𝑊
𝜅3,𝑖) * * *

0 0 0 0 𝐼 0 0 0 0 0 0

0 0 0 0 0 𝐼 0 0 0 0 0

0 0 0 0 0 0 𝐼 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿𝛼𝑘
𝑡

𝛿𝜃𝑘𝑡

𝛿𝛽𝑘
𝑡

𝛿𝜖𝑘𝑡

𝛿𝑏𝑎𝑡

𝛿𝑏𝑔𝑡

𝛿𝑏𝑣𝑡

𝛿𝜌1

𝛿𝜌2

𝛿𝜌3

𝛿𝜌4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝛿𝑡2

4
�̂�𝑏𝑘

𝑖
𝛿𝑡
2
𝜅7 − 𝛿𝑡2

4
�̂�𝑏𝑘

𝑖+1
𝛿𝑡
2
𝜅7 0 0 0

0 − 𝛿𝑡
2

0 − 𝛿𝑡
2

0 0 0

− 𝛿𝑡
2
�̂�𝑏𝑘

𝑖 𝜅7 − 𝛿𝑡
2
�̂�𝑏𝑘

𝑖+1 𝜅7 0 0 0

0 𝜅11 − 𝛿𝑡
2
�̂�𝑏𝑘

𝑖

∑︀
𝑗
𝑤𝑗

𝑊
⌊𝑔𝑏𝑖𝑗⌋× 0 𝜅11 − 𝛿𝑡

2
�̂�𝑏𝑘

𝑖+1

∑︀
𝑗
𝑤𝑗

𝑊
⌊𝑔𝑏𝑖+1𝑗⌋× 0 0 0

0 0 0 0 𝛿𝑡 0 0

0 0 0 0 0 𝛿𝑡 0

0 0 0 0 0 0 𝛿𝑡

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . .

113

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

𝛿𝑡
2
�̂�𝑏𝑘

𝑖

∑︀
𝑗
𝑤𝑗

𝑊
𝜅4,𝑖

𝛿𝑡
2
�̂�𝑏𝑘

𝑖+1

∑︀
𝑗
𝑤𝑗

𝑊
𝜅4,𝑖+1

𝛿𝑡
2
�̂�𝑏𝑘

𝑖 𝑅𝑏𝑟

∑︀
𝑗
𝑤𝑗

𝑊
𝐽(𝜑𝑖𝑗)

𝛿𝑡
2
�̂�𝑏𝑘

𝑖+1𝑅𝑏𝑟

∑︀
𝑗
𝑤𝑗

𝑊
𝐽(𝜑𝑖+1𝑗) −𝛿𝑡 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 𝛿𝑡 0 0 0

0 0 0 0 0 0 𝛿𝑡 0 0

0 0 0 0 0 0 0 𝛿𝑡 0

0 0 0 0 0 0 0 0 𝛿𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣

𝑛𝑎𝑖

𝑛𝑔𝑖

𝑛𝑎𝑖+1

𝑛𝑔𝑖+1

𝑛𝑏𝑎𝑡

𝑛𝑏𝑔𝑡

𝑛𝑏𝑣𝑡

𝑛𝜑𝑖

𝑛𝜑𝑖+1

𝑛�̇�𝑖

𝑛�̇�𝑖+1

𝑛𝑣𝑖

𝑛𝜌1

𝑛𝜌2

𝑛𝜌3

𝑛𝜌4

⎤⎥⎥⎦

𝜅10 =
𝛿𝑡2

2
�̂�𝑏𝑘

𝑖+1⌊𝑣𝑚𝑖+1
− �̂�𝑣𝑘⌋× −

𝛿𝑡

2
(�̂�𝑏𝑘

𝑖

∑︁
𝑗

𝑤𝑗

𝑊
⌊𝑔𝑏𝑖𝑗⌋× + �̂�𝑏𝑘

𝑖+1

∑︁
𝑗

𝑤𝑗

𝑊
⌊𝑔𝑏𝑖+1𝑗⌋×)

𝜅11 =
𝛿𝑡2

4
�̂�𝑏𝑘

𝑖+1⌊𝑣𝑚𝑖+1
− �̂�𝑣𝑘⌋×

114

4.7.4 Residual Jacobian

In this section we list Jacobians of (4.29) w.r.t to 𝑥𝑘 = [𝑝𝑤𝑏𝑘 , 𝑞
𝑤
𝑏𝑘
, 𝑣𝑤𝑏𝑘 , 𝑏𝑎𝑘, 𝑏𝑔𝑘, 𝑏𝑣𝑘, 𝜌1𝑘, 𝜌2𝑘, 𝜌3𝑘, 𝜌4𝑘]

and

𝑥𝑘+1 = [𝑝𝑤𝑏𝑘+1
, 𝑞𝑤𝑏𝑘+1

, 𝑣𝑤𝑏𝑘+1
, 𝑏𝑎𝑘+1, 𝑏𝑔𝑘+1, 𝑏𝑣𝑘+1, 𝜌1𝑘+1, 𝜌2𝑘+1, 𝜌3𝑘+1, 𝜌4𝑘+1] as follows:

𝐽 [0]25×7 =

[︂
𝜕𝑟

𝜕𝑝𝑤𝑏𝑘

𝜕𝑟
𝜕𝑞𝑤𝑏𝑘

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑅𝑏𝑘
𝑤 ⌊𝑅𝑏𝑘

𝑤 (𝑝𝑤𝑏𝑘+1
− 𝑝𝑤𝑏𝑘 +

1
2
𝑔𝑤∆𝑡2 − 𝑣𝑤𝑏𝑘∆𝑡)⌋

×

0 −[ℒ[𝑞𝑤𝑏𝑘+1

−1
⨂︀

𝑞𝑤𝑏𝑘]ℛ(𝛾
𝑘
𝑘+1)]3×3

0 ⌊𝑅𝑏𝑘
𝑤 (𝑣𝑤𝑏𝑘+1

+ 𝑔𝑤∆𝑡− 𝑣𝑤𝑏𝑘)⌋
×

−𝑅𝑏𝑘
𝑤 ⌊𝑅𝑏𝑘

𝑤 (𝑝𝑤𝑏𝑘+1
− 𝑝𝑤𝑏𝑘)⌋

×

0 0

0 0

0 0

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.39)

115

𝐽 [1]25×9 =

[︂
𝜕𝑟

𝜕𝑣𝑤𝑏𝑘

𝜕𝑟
𝜕𝑏𝑎𝑘

𝜕𝑟
𝜕𝑏𝑔𝑘

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑅𝑏𝑘
𝑤 ∆𝑡 −𝐽𝛼

𝑏𝑎
−𝐽𝛼

𝑏𝑔

0 0 −ℒ[𝑞𝑤𝑏𝑘+1

−1
⨂︀

𝑞𝑤𝑏𝑘
⨂︀

𝛾𝑘𝑘+1]3×3𝐽
𝛾
𝑏𝑔

−𝑅𝑏𝑘
𝑤 −𝐽𝛽

𝑏𝑎
−𝐽𝛽

𝑏𝑔

0 0 −𝐽 𝜖
𝑏𝑔

0 −𝐼 0

0 0 −𝐼

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐽 [2]25×7 =
[︁

𝜕𝑟
𝜕𝑏𝑣𝑘

𝜕𝑟
𝜕𝜌1

𝜕𝑟
𝜕𝜌2

𝜕𝑟
𝜕𝜌3

𝜕𝑟
𝜕𝜌4

]︁
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−𝐽 𝜖
𝑏𝑣𝑘
−𝐽 𝜖

𝜌1𝑘
−𝐽 𝜖

𝜌2𝑘
−𝐽 𝜖

𝜌3𝑘
−𝐽 𝜖

𝜌4𝑘

0 0 0 0 0

0 0 0 0 0

−𝐼 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

116

𝐽 [3]25×7 =

[︂
𝜕𝑟

𝜕𝑝𝑤𝑏𝑘+1

𝜕𝑟
𝜕𝑞𝑤𝑏𝑘+1

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅𝑏𝑘
𝑤 0

0 ℒ[𝛾𝑘𝑘+1
−1⨂︀

𝑞𝑤𝑏𝑘
−1

⨂︀
𝑞𝑤𝑏𝑘+1

]3×3

0 0

𝑅𝑏𝑘
𝑤 0

0 0

0 0

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.40)

𝐽 [4]25×9 =

[︂
𝜕𝑟

𝜕𝑣𝑤𝑏𝑘+1

𝜕𝑟
𝜕𝑏𝑘+1

𝜕𝑟
𝜕𝑏𝑘+1

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

𝑅𝑏𝑘
𝑤 0 0

0 0 0

0 𝐼 0

0 0 𝐼

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

117

𝐽 [5]25×7 =
[︁

𝜕𝑟
𝜕𝑏𝑣𝑘+1

𝜕𝑟
𝜕𝜌1

𝜕𝑟
𝜕𝜌2

𝜕𝑟
𝜕𝜌3

𝜕𝑟
𝜕𝜌4

]︁
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

𝐼 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

118

Chapter 5

Multi-IMU Proprioceptive Odometry

In Chapter 3 and Chapter 4 we mainly leveraged a model where we treat foot de-

formations as leg kinematic parameter changes. This model become less effective if

we adopt a foot design that has harder surface. In this way the foot is less likely to

deform but more easily to roll on the ground. But we decided to take this design

and add more sensors to better capture the rolling motion. In addition to the con-

ventional sensor set used in standard Proprioceptive Odometry, including one body

Inertial Measurement Unit (IMU) and joint encoders, we attach an additional IMU

to each calf link of the robot, just above the foot.

We modify the Kalman filter formulation to fuse data from all sensors to estimate

the robot’s body and foot positions in the world frame. By using the additional IMUs,

the filter can reliably determine foot contact modes and detect foot slips without

tactile or pressure-based foot contact sensors. This sensing solution is validated in

various hardware experiments, which confirm that it can reduce position drift by

nearly an order of magnitude compared to conventional approaches, with only a very

modest increase in hardware and computational costs.

119

(a) Touchdown (b) Liftoff

Figure 5-1: The point foot has obvious rolling contact during stance.

5.1 Introduction

Our goal is to develop a PO solution that can achieve low position drift while re-

quiring minimal additional hardware and computational resources. To achieve this,

we propose Multi-IMU Proprioceptive Odometry (MIPO), a sensing solution that

uses multiple IMUs and leg-joint encoders to significantly improve upon KF-based

PO methods that only use a single IMU. Compared to visual sensors such as cam-

eras and lidar, an IMU has much lower cost, energy consumption, and physical size.

Therefore, we are able to add IMUs to the robot’s calf links near the feet with min-

imal impact on the overall design and cost. To fuse data from additional IMUs, We

include world-frame foot positions and velocities in the state of an Extended Kalman

Filter (EKF) and design a prediction model to update foot velocities using foot IMU

data. More importantly, we also leverage the foot IMUs to detect contact and

foot slip in a novel measurement model, overcoming a fundamental error source in

conventional PO, where feet are assumed to have zero velocity relative to the ground

while in contact [14, 19, 55, 163].

120

−50 −40 −30 −20 −10 0 10

0

10

20

30

40 Ground Truth
Standard PO
Multi-IMU PO

Figure 5-2: Left: A Unitree Go1 robot equipped with foot IMUs. Right: Posi-
tion estimates while walking over a 160m loop trajectory: Standard Proprioceptive
Odometry (PO) has an average XY position drift of 18.4%, while our Multi-IMU
PO solution achieves 2.59% average drift, a significant improvement achieved with
minimal additional hardware and computational cost.

Our state-estimation approach is validated on a quadrupedal robot in a variety

of conditions, and we make comparisons to several existing baseline methods. Our

specific contributions include:

• A novel low-cost multi-IMU sensing solution for proprioceptive odometry on

legged robots.

• An Extended Kalman Filter (EKF) with a prediction model that uses foot IMU

data to update foot velocities and a measurement model that uses foot IMU

data to determine foot contact modes and slip.

• Ablation studies and comparison experiments on hardware demonstrating sig-

nificant reductions in position drift.

The remainder of this chapter is organized as follows: Section 5.2 provides a re-

view of related work. Section 5.3 presents the basics of legged robot state estimation.

121

Section 5.4 presents our main technical contributions. Section 5.5 compares our so-

lution with baseline methods across a variety of experiments. An ablation study is

also provided. Finally, Section 5.6 concludes the chapter.

5.2 Related Work

Deploying a suite of IMUs, rather than just one, to enhance estimation performance

is common in several domains, such as pedestrian navigation systems [5], augmented

and virtual-reality applications [66], and general VIO [40]. In legged robot state

estimation, a PO solution is proposed in [162] using a network of IMUs installed

on different parts of a humanoid robot for better joint-velocity sensing. A similar

approach uses redundant accelerometers to improve joint information estimation [83].

A multi-IMU Kalman filter is developed for an exoskeleton [41]. It has also been

shown that multiple IMUs can help quantify link flexibilities [152].

5.3 Background

Key building blocks of our work, such as quaternion representation, leg odometry,

and Kalman filtering, have been extensively discussed in the previous chapters. Ad-

ditional to standard Kalman filtering, we further leverage an idea that uses “factor”

like measurement model in EKF.

122

5.3.1 Implicit Measurement Model & Quaternion Measure-

ment

An intuitive understanding of Kalman filter is, we would expect the innovation to

be zero after seeing the sensor data. If the innovation is not zero, we transform the

nonzero residual in an educated way and use it to correct the estimated state. This

leads to a measurement model as “implicit measurement”. We can write Eqn (3.33)

as

0 = ℎ′(𝑥𝑡, 𝑧𝑡) + 𝑣 = ℎ(𝑥𝑡)− 𝑧𝑡 + 𝑣 (5.1)

and define a new residual

𝑦′𝑡 = ℎ′(�̂�𝑡, 𝑧𝑡) = −𝑠𝑡(�̂�𝑡). (5.2)

Doing Taylor expansion at 𝑥𝑡−1 = �̂�𝑡−1 + 𝛿𝑥𝑡−1 of Eqn. (5.1) shows that

𝑠𝑡(�̂�𝑡) =
𝜕ℎ′

𝜕𝑥

⃒⃒⃒⃒
�̂�𝑡

𝛿𝑥𝑡 + 𝑣 (5.3)

We notice that if ℎ′(𝑥𝑡, 𝑧𝑡) = ℎ(𝑥𝑡) − 𝑧𝑡, then 𝜕ℎ/𝜕𝑥 = 𝜕ℎ′/𝜕𝑥. And nothing

changes for ESKF steps. It seems unnecessary and confusing to do so. However, this

implicit measurement is very important for complex nonlinear measurements.

For example, if the legged robot estimator state involves body orientation 𝑞 and

foot orientation 𝑞𝐿, the robot kinematics model observes their differences as

𝑞𝐹𝐾 = 𝑞−1 ⊗ 𝑞𝐿. (5.4)

In this case, the notion of subtraction (𝑧𝑡 − ℎ(𝑥𝑡)) is ill-defined because we cannot

123

directly subtract two quaternions. On the other hand, the implicit measurement idea

is more straightforward. Given an estimated state �̂�𝑡−1 and a sensor observation 𝑞𝑦,

we calculate an innovation term

𝑦𝑡 = Log(𝑞−1
𝑦 ⊗ 𝑞−1 ⊗ 𝑞𝐿) (5.5)

and then use 𝑠𝑡 in Eqn. (5.2) and Eqn. (5.3) for ESKF update steps.

5.4 Technical Approach

The standard single-IMU PO method presented in Section 3.3.11 has two funda-

mental limitations: First, bias estimation, which usually must be included if IMU

hardware quality is not good, would drift when the robot stands still with colinear

contacts [19]. It will lead to wrong orientation estimation. Second, the zero-velocity

assumption used when deriving (3.47) is seldom true on hardware. The LO velocity

always underestimates the true velocity if the foot is rolling during contact, as shown

in Figure 5-3. Both of these limitations can be addressed by adding additional IMUs

to the robot’s feet. We refer to this sensor-and-algorithm combination as Multi-

IMU Proprioceptive Odometry (Multi IMU PO). The hardware sensor setup will be

explained in Section 5.5, this section focuses on the algorithm. Compared to the

previous publication [164], we extend the filter state to include foot orientations and

use a simplified quaternion small-rotation approximation technique to achieve fast

and precise computation. We also add a new measurement model to keep the bias

from drifting.

We define the multi-IMU estimator state as 𝑥 = [𝑝;𝑣; 𝑞; 𝑏𝑎; 𝑏𝑔; [𝑠; �̇�; 𝑞𝑓 ; 𝑏𝑠; 𝑏𝑡]𝑗]

where 𝑝, 𝑣, 𝑞, and 𝑠 are the same as that defined in Section 3.3.11. Additionally, we

124

also estimate body IMU accelerometer biases 𝑏𝑎 ∈ R3 and gyroscope biases 𝑏𝑔 ∈ R3,

foot velocity �̇� ∈ R3 and foot orientation 𝑞𝑓 ∈ 𝑆𝑂(3) as a quaternion, and foot IMU

accelerometer biases 𝑏𝑠 ∈ R3 and foot IMU gyroscope biases 𝑏𝑞 ∈ R3. The subscript 𝑗

means that the second part of the state has 𝐸 copies, one for each leg. The estimator

state dimension increases considerably (for quadrupeds, the dimension is 80, while

the single PO has a dimension of 28 even with biases added). But this dimension

increase is necessary. As we will show, including foot orientation is important for

keeping the entire system observable, and foot velocity is critical for low drift body

position estimation. To keep a low computation load, we would like to calculate

analytical Jacobians and leverage Jacobian sparsity as much as possible.

For brevity, again in the subsequent discussion, we consider 𝐸 = 1 and drop

leg index 𝑗. We assume all sensors are synchronized and produce data at the same

frequency. In addition to sensor measurements introduced in Section 3.3.11, we also

get 𝑎𝑓 and 𝜔𝑓 , the foot acceleration reading and the foot angular velocity reading

from an IMU installed on the foot in the foot frame.

125

5.4.1 EKF Process Model

We use �̂�′ to represent �̂�𝑘+1|𝑘 in order to simplify notation. The process model is

changed from (3.45) to

�̂�′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂�′

�̂�′

�̂�′

�̂�′𝑎

�̂�′𝑔

�̂�′

˙̂𝑠′

�̂�′𝑓

�̂�′𝑠

�̂�′𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂�+∆𝑡�̂�

�̂� +∆𝑡(𝑅(�̂�)(𝑎𝑏 − �̂�𝑎)− 𝑔𝑤)

𝑀(�̂�)Exp((𝜔𝑏 − �̂�𝑔)∆𝑡)

�̂�𝑎

�̂�𝑔

�̂�+∆𝑡 ˙̂𝑠

˙̂𝑠+∆𝑡(𝑅(�̂�𝑓)(𝑎𝑓 − �̂�𝑠)− 𝑔𝑤)

𝑀(�̂�𝑓)Exp((𝜔𝑓 − �̂�𝑡)∆𝑡)

�̂�𝑠

�̂�𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.6)

Compared to (3.45), although the dimension increases, the update equations are

structurally identical and self-contained for body and foot, which are two rigid links

with installed IMUs. Therefore, the Jacobian is fairly sparse. Moreover, the noise

covariance of this process model does not depend on the contact flag because the

dynamics are continuous. The foot velocity noise covariance is constant as long as

the foot IMUs do not saturate their readings, which can be guaranteed by proper

controller design and IMU hardware selection.

5.4.2 The Pivoting Contact Model

A key observation that significantly enhances the estimation of body velocity is

the relationship between the foot’s contact point and its velocity. For any legged

126

robot, whether it has point feet or flat feet, the foot pivots around the contact

point at any given moment. This occurs irrespective of whether the contact foot is

stationary or in motion, the type of terrain, or any deformation that might occur

on the foot surface or the ground. Thus, the contact foot’s linear velocity should

equal the cross product of the foot angular velocity vector 𝜔 and a pivoting vector

𝑑 pointing from the contact point to the foot frame origin. For robots with flat

feet, the contact point is at the center of pressure (CoP), which can be measured

directly by foot contact sensors [41]. However, for robots equipped with spherical

"point" feet, directly measuring the contact location on each foot is difficult. We

discovered that a suitable approximation can be achieved by using the point on the

foot’s surface that aligns with a line drawn from the body frame origin to the foot

frame origin. This approximation is effective because the body frame also pivots

around the contact point. This specific point and the corresponding equations are

depicted in Figure 5-3, in which

˙̂𝑠 = 𝜔𝑝(�̂�,𝜔𝑓)× 𝑑𝑝(�̂�,𝛼), and (5.7)

𝜔𝑝(�̂�,𝜔𝑓) = 𝑅(�̂�𝑓)(𝜔𝑓 − �̂�𝑡), (5.8)

𝑑𝑝(�̂�,𝛼) = −𝑑0 · 𝑛/‖𝑛‖. (5.9)

In the calculation, 𝑑0 is the distance between the foot center and the foot surface. If

the foot does not deform much during locomotion, this distance can be treated as a

constant and measured from the CAD model, which is the case in our experiments; if

the foot deforms a lot, 𝑑0 can be obtained using data-driven methods or a calibration

method such as that described in [163]. 𝑛 = 𝑅(�̂�)𝑔(𝛼) is the contact normal vector

expressed in the world frame. This “pivoting model” captures the rolling contact

better than [163].

127

to robot frame

17 17.5 18 18.5 19 19.5 20 20.5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

X
Fo

ot
V

el
oc

ity
(m

/s
)

Ground Truth
Pivoting Model

Figure 5-3: Left: Illustration of the pivoting model for a foot that has rolling contact
with the ground. The estimated foot velocity �̇�𝑘 depends on 𝜔 and 𝑑, as defined in
(5.8) and (5.9). Right: Comparison of ground-truth foot velocity captured with a
motion capture system to estimation using the pivoting model (5.12). When the foot
has non-zero rolling velocity during contacts (shaded regions), the pivoting model
agrees with the ground truth velocity very well while the zero-velocity model treats
foot velocity as zero.

5.4.3 EKF Measurement Model

We define a measurement residual 𝑦(�̂�,𝛼,𝑎𝑓 ,𝜔𝑓) = �̄�(𝛼)− ℎ(�̂�,𝛼,𝑎𝑓 ,𝜔𝑓), where

�̄�(𝛼) =
[︁
𝑔(𝛼);0;0;0;𝑎𝑓

]︁
(5.10)

128

and

ℎ(�̂�,𝛼,𝑎𝑓 ,𝜔𝑓) = (5.11)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅(�̂�)𝑇 (�̂�− �̂�)

Log(𝑞(𝛼)−1 ⊗ �̂�−1 ⊗ �̂�𝑓)

𝐽(𝛼)�̇�− ⌊𝜔𝑏 − �̂�𝑔⌋×𝑔(𝛼)−𝑅(�̂�)𝑇 (�̂� − ˙̂𝑠)

˙̂𝑠− 𝜔𝑝(�̂�,𝜔𝑓)× 𝑑𝑝(�̂�,𝛼)

𝑅(�̂�𝑓)
𝑇𝑔𝑤 + �̂�𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.12)

Several terms in the sensor measurement vector �̄� are 0 and the sensor data appears

in the measurement model. We call these “implicit measurements.”

The first term of the residual 𝑦 is the same as in (3.48). The second term uses

forward kinematics to observe the rotational difference between the foot orientation

and the body orientation, which is an implicit measurement because of the special

structure of the quaternion. The term 𝑞(𝛼) represents a rotation between the foot

frame and the body frame calculated from the forward kinematics [91]. The third

term comes from (3.44) without assuming 𝑣𝑤𝑓 = 0. In contrast to (3.48), these three

terms related to leg forward kinematics do not have varying measurement noise since

they stay valid across foot contact switches.

We refer to the fourth term, which is based on the pivoting model, as a pivoting

measurement. The pivoting measurement is only valid when a foot is in contact

with the ground and its residual value is drastically different in stance and swing

phases, which allows us to use a better technique to change its contribution to the

estimation.

The last term commonly appears in the IMU complementary filter [95, 150], where

the IMU accelerometer reading is used for observing the gravity direction. This mea-

129

surement model assumes the gravitational field dominates the low frequency response

of the accelerometer. This assumption is often not valid for IMUs on the body of

legged robots where horizontal linear accelerations are significant. However, when

IMUs are on their feet and contact can be reliably detected, this measurement model

becomes accurate and can contribute to robot orientation estimation significantly.

Since the yaw orientation of the robot is never observable [19], whenever a better

yaw observation is available — for example, a vision-based method from VIO where

global landmarks can be observed — we can introduce it into the EKF. It can be

formulated in different ways, one of the simplest observations is calculating the yaw

angle from the orientation quaternion as [3]

YAW(𝑞) = arctan(2(𝑞𝑥𝑞𝑦 + 𝑞𝑤𝑞𝑧), 1− 2(𝑞𝑦𝑞𝑦 + 𝑞𝑧𝑞𝑧)) (5.13)

5.4.4 Foot Contact and Slip Detection

The last two terms in the measurement model (5.12) are only accurate when the

robot foot has contact with the ground. Instead of doing the covariance-scaling

heuristic (3.46) for them, we use a statistical test based on the Mahalanobis norm

[17]:

‖𝑦‖𝑆 < 𝜎, (5.14)

where 𝜎 is a hyperparameter, 𝑦 = ˙̂𝑠 − 𝜔𝑝 × 𝑑𝑝 as defined in (5.12), and 𝑆 is its

corresponding covariance matrix calculated in the Kalman filter Algorithm (1). If

(5.14) is satisfied, we treat the foot as being in non-slipping contact and include the

corresponding pivoting measurement in the update (5.12).

Due to substantial differences in foot velocity between swing and stance phases

(see Figure 5-3 unshaded regions), (5.14) can effectively distinguish foot phases with-

130

out a dedicated contact sensor. Notably, analogous mechanisms for the zero-velocity

model have been employed in previous works such as [19] and [75]. In Section 5.5,

we further demonstrate the importance of the statistical test in the pivoting model

through an ablation study.

5.4.5 Analytical Jacobian

It is well known that when the EKF state includes quaternions, the filter should oper-

ate on the error state [93, 163], in which orientation error is parameterized by a three-

parameter rotation representation. Let the true state of the robot be 𝑥 and the esti-

mated state be �̂�, then we denote the error state as 𝛿𝑥 = [𝛿𝑝; 𝛿𝑣; 𝛿𝜃; 𝛿𝑏𝑎; 𝛿𝑏𝑔; 𝛿𝑠; 𝛿�̇�; 𝛿𝜃𝑓 ; 𝛿𝑏𝑠; 𝛿𝑏𝑡],

in which Euclidean vectors are in the form of true state minus estimated state, such

as 𝛿𝑝 = 𝑝 − �̂�. But the error rotation is 𝛿𝜃 = Log(�̂�−1 ⊗ 𝑞) ∈ R3 as discussed in

Section 3.3.5. In this section, we give the analytical form of the Multi-IMU PO’s

EKF model Jacobians 𝐹 and 𝐻 introduced in the Kalman filter Algorithm (1), with

detailed derivations of key terms in the Appendix.

The process Jacobian 𝐹 is a sparse block matrix

𝐹 (𝑥,𝑎,𝜔,𝑎𝑓 ,𝜔𝑓) = (5.15)⎡⎣𝐹𝑠(𝑞, 𝑏𝑎, 𝑏𝑔,𝑎,𝜔) 0

0 𝐹𝑠(𝑞𝑓 , 𝑏𝑠, 𝑏𝑡,𝑎𝑓 ,𝜔𝑓)

⎤⎦

131

where

𝐹𝑠(𝑞, 𝑏𝑎, 𝑏𝑔,𝑎,𝜔) = (5.16)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 𝐼∆𝑡 0 0 0

0 𝐼 −𝑅(𝑞)⌊(𝑎− 𝑏𝑎)∆𝑡⌋× 0 −𝑅(𝑞)∆𝑡

0 0 𝐼 − ⌊(𝜔 − 𝑏𝑔)∆𝑡⌋× −𝐼∆𝑡 0

0 0 0 𝐼 0

0 0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We write the measurement Jacobian 𝐻 as

𝐻(𝑥,𝛼,𝑎𝑓 ,𝜔𝑓) = [𝐻𝑏 𝐻𝑓], (5.17)

where the first block 𝐻𝑏 is Jacobian concerning robot body-related state variables

while the second block relates to foot 𝐻𝑓 . Let 𝑅 be short for 𝑅(𝑞) and 𝑅𝑓 = 𝑅(𝑞𝑓),

then we have:

𝐻𝑏 = (5.18)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑅𝑇 0 ⌊𝑅𝑇 (𝑠− 𝑝)⌋× 0 0

0 0 −ℒ(𝑞−1
𝑓 ⊗ 𝑞)ℛ(𝑞(𝛼))3 0 0

0 −𝑅𝑇 ⌊𝑅𝑇 (�̇�− 𝑣)⌋× 0 −⌊𝑔(𝛼)⌋×

0 0 ⌊𝜔𝑝⌋×⌊𝑑𝑝⌋× 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

132

and 𝐻𝑓 = (5.19)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅𝑇 0 0 0 0

0 0 ℒ(𝑞(𝛼)⊗ 𝑞−1 ⊗ 𝑞𝑓)3 0 0

0 𝑅𝑇 0 0 0

0 𝐼 −⌊𝑑𝑝⌋×⌊𝜔𝑝⌋× 0 −⌊𝜔𝑝⌋×𝑅𝑓

0 0 ⌊𝑅𝑇
𝑓 𝑔

𝑤⌋× 𝐼 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In above equations, ℒ()3 means the bottom right 3-by-3 sub-matrix of Equation (3.8)

and ℛ()3 is the bottom right 3-by-3 sub-matrix of Equation (3.9). These Jacobians

are sparse by nature. And their elements can be calculated efficiently.

In the literature, some formulations also treat joint-angle and joint-angle velocity

measurements as noise corrupted and calculate a measurement Jacobian for 𝛼 and

�̇� [55, 159]. We found this Jacobian can often be approximated as a constant matrix

since, during locomotion, joint angles stay within small ranges so we can precalculate

the Jacobian using the average joint angles as a part of Σ𝑤.

5.4.6 Observability Analysis

The nonlinear observability analysis of the dynamical system we have formulated is

nontrivial because of the complicated measurement model. It is easier to do local

observability analysis through the Jacobians. Prior work has pointed out that such

analysis would lead to the conclusion that the yaw angle of the orientation is observ-

able [19], which it is not. Intuitively, it is obvious that, even with additional IMUs,

the global positions and yaw angles of the robot are still not observable. Therefore,

our goal for observability analysis is to prove other state terms are observable. We

can verify that for the process Jacobian (5.15) and the measurement Jacobian (5.17),

133

the Observability Matrix [57]

𝒪1 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐻0

𝐻1𝐹0

...

𝐻𝑇𝐹𝑇𝐹𝑇−1 · · ·𝐹0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.20)

and the local Observability Gramian [80]

𝒪2 =
𝑇∑︁
𝑖=0

(𝐹 𝑇
𝑖)

𝑖𝐻𝑇
𝑖 𝐻𝑖(𝐹𝑖)

𝑖 (5.21)

both have rank 15×(1+𝐸)−3, where the Jacobians are evaluated along an estimated

state trajectory [𝑥0, 𝑥1, . . . , 𝑥𝑇] with enough time steps. 15 is the dimension of state

variables related to either the robot body link or a foot link. 𝐸 is the total number

of legs. This result aligns with the conclusion that global position is not observable

and the yaw angle is rendered observable locally. Since the most important job of

the state estimator is to provide pitch and roll orientation as well as body pose

rate (linear velocity and angular velocity) to the controller, be sure that these key

variables are observable is enough to ensure overall system stability.

The rank condition is satisfied for any state and measurement value, even when

the robot stands still with zero angular velocity. The standard PO’s observability

matrix would drop rank when body angular velocity is 0, while the Multi-IMU PO

will keep the rank condition consistent.

134

Frequency Solve Time Median Drift
Standard PO 200Hz 1.81ms 11.05%

MIPO 200Hz 2.50ms 2.61%

Table 5.1: Performance Summary

5.4.7 Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound (CRLB) is a metric that indicates the theoretical

lower bound of the covariance of the output of a state estimator [144]. By computing

and contrasting the CRLBs of various filters, we can validate our hypothesis that

Multi-IMU PO is expected to outperform the conventional PO method due to a

richer set of sensor information.

According to [144], the CRLB for a Kalman filter is defined as a matrix 𝑃 * that

at any time instance k, we have estimation covariance 𝑃𝑘 ≥ 𝑃 *. This lower bound

can be computed recursively along with the EKF procedure as:

(𝑃 *
𝑘)

−1 = (𝐹𝑘𝑃
*
𝑘−1𝐹

𝑇
𝑘)

−1 +𝐻𝑇
𝑘 Σ

−1
𝑤 𝐻𝑘 (5.22)

where 𝑃 *
𝑘 is the lower bound calculated at time 𝑘. 𝐹𝑘, 𝐻𝑘, and Σ𝑤 are defined in

Algorithm 1. These matrices will have different values for Multi-IMU PO and the

standard PO, but since the states of both filters contain the position of the robot, we

can examine the covariance of position in their respective CRLBs, as will be shown

in Section 5.5.

5.5 Experiments

We conducted a series of indoor and outdoor experiments on hardware to compare

our MIPO with the baseline method, standard single-IMU PO [14], and Cerberus

135

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.5

0

0.5

1

1.5

2

X Position (m)

Y
P
os

it
io

n
(m

)
Ground truth
Standard PO
Multi-IMU PO

Figure 5-4: The estimated XY position trajectory comparison of the standard PO
and MIPO. The total trajectory length is 10.5m. The standard PO estimation drifts
11.39% on average, and its maximum RSE is 1.04m. While the result of MIPO has
2.31% average drift and 0.25m maximum RSE.

Visual-Inertial-Leg Odometry (VILO) [165]. We focused on evaluating their posi-

tion estimation performance, especially XY position. Common evaluation metrics

used in the state-estimation literature include Root-Square-Error (RSE) and drift

percentage. RSE is defined as the Euclidean distance between the ground truth and

the estimated position at a given time instance. Drift percentage is defined as the

ratio of the RSE to the total distance traveled. The data and code used to generate

results are available on Github1.

5.5.1 Sensor Hardware Design

The MIPO hardware does not significantly alter the form factor of the Go1 robot.

The Go1 robot’s built-in proprietary MEMS IMU sensor and joint motor encoder

data can be obtained at 200Hz via Ethernet. The robot also has four pressure
1https://github.com/ShuoYangRobotics/Multi-IMU-Proprioceptive-Odometry

136

https://github.com/ShuoYangRobotics/Multi-IMU-Proprioceptive-Odometry

Figure 5-5: Left: The CAD design of foot IMU mount. The offset from IMU to foot
center is measured from the CAD drawing. Right: The IMU installation on one
foot of a Unitree Go1 robot.

contact sensors on the feet that can be thresholded to obtain binary contact flags for

the baseline method. Our MIPO, however, does not use contact sensor data. Instead,

four MPU9250 IMUs are installed on each foot, right above the foot, as shown in

Fig. 5-5. Since it is difficult to directly install an IMU at the exact foot center,

we transform foot IMU outputs to the foot center frame using the transformation

measured in the CAD model. An Arduino Teensy board communicates with the foot

IMUs, acquiring their outputs at 200Hz. An Intel NUC mini computer finally collects

sensor data from the Go1 robot and the Teensy board to run the MIPO algorithm.

The computer also runs a nonlinear predictive control locomotion controller [42].

5.5.2 Position Estimation Evaluation

We first compare the results of MIPO against standard PO in an indoor environ-

ment. The robot operates in a lab space equipped with a motion capture (MoCap)

system which provides the ground truth pose. The robot uses the trotting gait or

137

flying trotting gait (with a full airborne phase between leg switching) to locomote in

arbitrary directions with a speed of 0.4-1.0 m/s on flat ground. Fig. 5-4 compares

the estimated position trajectories. Table 5.1 compares their per-loop solve times

and average drifts across five different datasets. MIPO has larger state dimensions

so the computation time is slightly longer, but the time is still within the budget (5

ms). Moreover, the drift percentage is significantly lower.

In outdoor environments where neither MoCap or reliable GPS signals are avail-

able, we use the Cerberus [165] VILO algorithm as ground truth to compare MIPO

and standard PO. As can be seen in Fig. 5-2, MIPO achieves a much smaller position

drift than standard PO after traveling 160m over varrying terrains.

Lastly, we compare the CRLBs of Multi-IMU PO and standard PO. As discussed

in Section 5.4.7, the CRLB represents the lowest possible uncertainty of a state esti-

mator. For any given trajectory, we can calculate the CRLB recursively as Equation

(5.22) from an initial covariance. In Figure 5-8, it is shown that Multi-IMU PO has

a much smaller CRLB than standard PO. This result aligns with our intuition and

previous experiment results that Multi-IMU has better estimation performance.

5.5.3 Multi-IMU PO Orientation Estimation

Robot state estimation can be challenging in some special cases during locomotion.

For example, when a legged robot performs fast in-place rotation with rapidly chang-

ing angular accelerations using the trotting gait, the robot could suffer from several

error sources. First, robot feet deform more than usual, making leg kinematics less

accurate. Second, the foot-supporting line gets close to roll axis so the roll angle be-

comes less observable. Lastly, angular acceleration makes IMU have elevated noise.

138

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

X Position (m)

Y
P
os

it
io

n
(m

)

Ground truth
Standard PO
Multi-IMU PO
MIPO-P
MIPO-F
MIPO-C

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

Time (s)

D
ri

ft
P
er

ce
nt

ag
e

(%
)

Standard PO
Multi-IMU PO
MIPO-P
MIPO-F
MIPO-C

Figure 5-6: Top: XY position trajectory estimation results of the standard PO,
MIPO, and three MIPO variants used in the ablation study. The total trajectory
length is 21.5m. Bottom: The drift percentages over time of all methods. MIPO
has the smallest (4.21%), followed by MIPO-F (7.75%), MIPO-C (11.3%), MIPO-P
(12.04%), and the standard PO (16.87%).

139

These problems can be effectively solved by including foot orientations to the

filter and adding gravity direction observation as shown in Equation 5.10. We observe

that even during fast in-place rotation and foot-rolling contacts, the IMUs on feet

capture gravity direction reasonably well during contacts. We show its contribution

in Figure 5-7. In this experiment, the operator arbitrarily gave the robot a fast

fast-changing yaw rate command to rotate the robot. We collect sensor data and

offline run different estimation methods to get body orientation estimations. Unlike

in the previous section, we do not use Mocap ground truth orientation to correct any

estimation. Then we convert all estimated orientations to Euler Angle and compare

pitch and roll angles with MoCap ground truth. In the plots, the “Complementary

Filter” is an implementation of [95], where the accelerometer and user command are

used to estimate gravity direction to correct orientation drift. Among all methods,

the Multi-IMU PO has the smallest orientation estimation error. In the most extreme

case (time 13.6s, where the robot did a fast stop and start of rotation), ground truth

roll orientation is 2.49deg, while standard PO estimates it to be 1.74deg and the

Multi-IMU PO estimation is 2.11deg. The Multi-IMU’s orientation is 50.6% more

accurate at this time and has 30% less estimation error on average.

5.5.4 Ablation Study

In this section, we study the individual contribution of the pivoting model and the

statistical test introduced in Section 5.4.3. We create three algorithm variants: 1)

MIPO-P, where the fourth term in (5.12) is ˙̂𝑠𝑘 instead of ˙̂𝑠𝑘 − 𝜔 × 𝑑. We vary its

measurement noise according to the contact flag but do not perform the statistical

test (5.14). In this way, MIPO-P is essentially a standard PO that uses MIPO’s

process model. 2) MIPO-F, which adopts the pivoting model from MIPO, but differs

140

6 7 8 9 10 11 12 13 14 15 16 17

−0.5

0

0.5

Time (s)

Y
aw

R
at

e
(r

ad
/s

) Yaw Rate Command

6 7 8 9 10 11 12 13 14 15 16 17
−2

0

2

4

Time (s)

A
ng

le
(d

eg
)

Pitch Angle Estimation Comparison
Ground Truth
Complementary filter
Standard PO
Multi-IMU PO

6 7 8 9 10 11 12 13 14 15 16 17
−2

0

2

Time (s)

A
ng

le
(d

eg
)

Roll Angle Estimation Comparison

Figure 5-7: To show how different orientation estimation methods perform differently
during fast in-place rotation, we compare the user input yaw rate command to the
robot (Top) and estimated body pitch (Middle) and roll angles (Bottom). Positive
command lets the robot spin counterclockwise. The faster the robot spins and the
more abrupt the angular acceleration is, the more the estimated orientation will be
wrong. Compared with the MoCap ground truth, average pitch and roll angular
estimation errors (in deg) of different methods are: Complementary filter (0.019,
0.040), Standard PO (0.0185, 0.025), Multi-IMU PO (0.015, 0.018).

141

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5
·10−2

Standard PO X Position CRLB
Multi IMU PO X Position CRLB

Figure 5-8: Plots of the element value corresponding to X position in the CRLB
matrix for standard PO and Multi-IMU PO. From the same initial covariance value,
both filters’ CRLB first decreases and then increases gradually. The CRLB of Multi-
IMU PO is much smaller than that of standard PO.

by replacing the statistical test with the measurement noise adjustment mechanism

based on the contact flag. And 3) MIPO-C, which uses MIPO’s process model,

MIPO-P’s measurement model, and the statistical test on the last measurement

term instead of varying measurement noise. The results of standard PO, MIPO, and

all three variants are shown in Fig. 5-6.

MIPO-F has performance closer to MIPO than standard PO, MIPO-P, and

MIPO-C, showing that the largest performance contributor is the pivoting constraint.

This result suggests that the zero-velocity model fundamentally limits the capabil-

ity of standard PO to achieve low-drift position estimation, even if more accurate

contact-flag generation methods can be used to avoid contact-detection errors in

standard PO.

142

5.6 Conclusion

We have presented the Multi-IMU Proprioceptive Odometry (MIPO), a legged robot

state estimation solution with IMUs in both the body and feet. Experiments have

shown that additional IMUs in feet can significantly reduce position drift and im-

prove overall estimation accuracy while keeping computation and hardware costs

low. Moreover, MIPO provides an alternative method for detecting foot contact

modes and foot slip without using contact sensors. It is a compelling replacement

for conventional single-IMU PO. The process and measurement models in MIPO can

be easily added to other EKF-based PO methods [14, 54]. MIPO’s accuracy should

further improve if IMU biases [19], kinematic parameters [163], and other calibration

errors are addressed. Moreover, MIPO can estimate ground deformation or mov-

ing velocity. We also plan to replace standard PO with MIPO in the open-source

Cerberus [165] odometry to improve its performance and robustness. Moreover, the

contact flag generated by MIPO may also benefit downstream control algorithms.

We will also study whether the contact flag generated by MIPO can benefit robot

control. We also conjecture that for any contact-rich multi-rigid body systems, in-

stalling IMUs on each link could improve the state estimation performance of the

entire system. A general estimation theory for such systems remains future work.

5.7 Appendix

The derivation of the process Jacobian has been presented in the VIO and legged

robot state-estimation literature such as [41, 161] and Chapter 4. We will use Equa-

tion 3.16 to derive two key terms in the measurement Jacobian.

We define true orientation as 𝑞 and our estimation as �̂�, so the estimation error

143

quaternion is 𝛿𝑞 = �̂�−1 ⊗ 𝑞. From standard quaternion kinematics [118]

�̇� =
1

2
𝑞 ⊗

⎡⎣𝜔 − 𝑏𝑔
0

⎤⎦ (5.23)

we have

(�̂�⊗̇𝛿𝑞) = ˙̂𝑞 ⊗ 𝛿𝑞 + �̂� ⊗ 𝛿�̇� =
1

2
�̂� ⊗ 𝛿𝑞 ⊗

⎡⎣𝜔 − (�̂�𝑔 + 𝛿𝑏𝑔)

0

⎤⎦ (5.24)

which can be simplified to

2𝛿�̇� = ℛ(

⎡⎣𝜔 − (�̂�𝑔 + 𝛿𝑏𝑔))

0

⎤⎦)𝛿𝑞 − ℒ(
⎡⎣𝜔 − �̂�𝑔

0

⎤⎦)𝛿𝑞
=

⎡⎣−⌊2(𝜔 − �̂�𝑔) + 𝛿𝑏𝑔⌋× −𝛿𝑏𝑔
𝛿𝑏𝑔 0

⎤⎦ 𝛿𝑞 (5.25)

Because 𝛿𝑞 = Exp(𝛿𝜃) =

⎡⎣1
2
𝛿𝜃

1

⎤⎦, then 𝛿�̇� =

⎡⎣1
2
𝛿�̇�

0

⎤⎦. Ignoring any product of two

error terms, we get⎡⎣𝛿�̇�
0

⎤⎦ =

⎡⎣−⌊2(𝜔 − �̂�𝑔) + 𝛿𝑏𝑔⌋× −𝛿𝑏𝑔
𝛿𝑏𝑔 0

⎤⎦⎡⎣1
2
𝛿𝜃

1

⎤⎦ (5.26)

𝛿�̇� = −⌊𝜔 − �̂�𝑔⌋×𝛿𝜃 − 𝛿𝑏𝑔 (5.27)

Alternatively, the result can be derived using rotation matrices. Write Exp(𝛿𝜃) =

144

𝐼 + ⌊𝛿𝜃⌋×. We notice

𝑅 = �̂�(𝐼 + ⌊𝛿𝜃⌋×) = �̂� + �̂�⌊𝛿𝜃⌋× (5.28)

then

�̇� =
˙̂
𝑅 +

˙̂
𝑅⌊𝛿𝜃⌋× + �̂�⌊𝛿�̇�⌋× (5.29)

Then we can expand �̇� = 𝑅⌊𝜔 − 𝑏𝑔⌋×, the matrix form of the rotation dynamics

[91] as

˙̂
𝑅 +

˙̂
𝑅⌊𝛿𝜃⌋× + �̂�⌊𝛿�̇�⌋× = (�̂� + �̂�⌊𝛿𝜃⌋×)⌊𝜔 − 𝑏𝑔⌋× (5.30)

⌊𝛿�̇�⌋× = ⌊𝛿𝜃⌋×⌊𝜔 − �̂�𝑔⌋×

− ⌊𝜔 − �̂�𝑔⌋×⌊𝛿𝜃⌋× − ⌊𝛿𝑏𝑔⌋× (5.31)

Since ⌊𝑎× 𝑏⌋× = ⌊𝑎⌋×⌊𝑏⌋× − ⌊𝑏⌋×⌊𝑎⌋×, then again

⌊𝛿�̇�⌋× = ⌊ − (𝜔 − �̂�𝑔)× 𝛿𝜃⌋× − ⌊𝛿𝑏𝑔⌋× (5.32)

𝛿�̇� = −⌊𝜔 − �̂�𝑔⌋×𝛿𝜃 − 𝛿𝑏𝑔, (5.33)

The result is the same as Equation 5.27.

5.7.1 Measurement Jacobian Terms

For term in Equation 5.10

ℎ2 = Log(𝑞(𝛼)−1 ⊗ �̂�−1 ⊗ �̂�𝑓)

145

First, we calculate the body orientation derivative.

𝜕ℎ2

𝜕𝛿𝜃
= lim

𝛿𝜃→0

1

𝛿𝜃
(Log(𝑞(𝛼)−1 ⊗ [𝑞 ⊗ Exp(𝛿𝜃)]−1 ⊗ 𝑞𝑓)

− Log(𝑞(𝛼)−1 ⊗ 𝑞−1 ⊗ 𝑞𝑓))

= lim
𝛿𝜃→0

1

𝛿𝜃
(Log(𝑞(𝛼)−1 ⊗ Exp(𝛿𝜃)−1 ⊗ 𝑞−1 ⊗ 𝑞𝑓)

− Log(𝑞(𝛼)−1 ⊗ 𝑞−1 ⊗ 𝑞𝑓))

= lim
𝛿𝜃→0

1

𝛿𝜃
(2

[︂
ℛ(𝑞−1 ⊗ 𝑞𝑓))ℒ(𝑞(𝛼)−1)

⎡⎣−1
2
𝛿𝜃

1

⎤⎦
−ℛ(𝑞−1 ⊗ 𝑞𝑓)ℒ(𝑞(𝛼)−1)

⎡⎣0
1

⎤⎦]︂
3×3

)

= lim
𝛿𝜃→0

−[ℛ(𝑞−1 ⊗ 𝑞𝑓)ℒ(𝑞(𝛼)−1)]3×3𝛿𝜃

𝛿𝜃
. (5.34)

An interesting property of the multiplicative maps is ℒ(𝑞)3×3 = ℛ(𝑞−1)3×3. So

𝜕ℎ2

𝜕𝛿𝜃
= −[ℛ(𝑞−1 ⊗ 𝑞𝑓)ℒ(𝑞(𝛼)−1)]3×3 (5.35)

= −[ℒ(𝑞−1
𝑓 ⊗ 𝑞)ℛ(𝑞(𝛼))]3×3. (5.36)

146

Secondly, we compute the foot orientation derivative.

𝜕ℎ2

𝜕𝛿𝜃𝑓
= lim

𝛿𝜃𝑓→0

1

𝛿𝜃𝑓
(Log(𝑞(𝛼)−1 ⊗ 𝑞−1 ⊗ 𝑞𝑓 ⊗ Exp(𝛿𝜃𝑓))

− Log(𝑞(𝛼)−1 ⊗ 𝑞−1 ⊗ 𝑞𝑓)) (5.37)

= lim
𝛿𝜃𝑓→0

1

𝛿𝜃𝑓
(2

[︂
ℒ(𝑞(𝛼)−1 ⊗ 𝑞−1 ⊗ 𝑞𝑓)

⎡⎣1
2
𝛿𝜃𝑓

1

⎤⎦
− ℒ(𝑞(𝛼)−1 ⊗ 𝑞−1 ⊗ 𝑞𝑓)

⎡⎣0
1

⎤⎦]︂
3×3

) (5.38)

=ℒ(𝑞(𝛼)−1 ⊗ 𝑞−1 ⊗ 𝑞𝑓)3×3. (5.39)

147

Chapter 6

Multi-IMU Visual-Inertial-Leg

Odometry

The fact that adding more IMUs to PO can significantly improve estimation perfor-

mance inspires us to consider incorporating more IMUs into VILO as well. In this

chapter, we explore multi-IMU VILO formulations, validate them through various

indoor and outdoor experiments, and use a multi-IMU VILO to provide feedback

to the robot controller. Additionally, we qualitatively study how different controller

settings can affect state estimation performance.

6.1 Cerberus 2.0

Building upon the Multi-IMU PO, we present Cerberus 2.0, a novel Multi-IMU

VILO state estimator that fuses camera images, body IMU, joint encoders, and foot

IMUs to achieve low-drift position estimation and precise orientation and velocity

estimation. This estimator follows the general structure of the optimization-based

148

VILO described in Section 4.3.3, but the contact preintegration considers the foot

IMU data. We present two different approaches to do so. The first one is to integrate

the velocity estimation from a Multi-IMU PO directly as the contact preintegration

term. The second approach is to process raw sensor information in a way similar to

(4.20). We will explain them in this section and study their robustness in Section 6.2.

Additionally, the estimator also leverages a Multi-IMU PO that runs in parallel with

the VILO to provide contact estimation. Cerberus 2.0 is an extended and improved

version of our previous contribution Cerberus [165].

6.1.1 Software Architecture

The overview of the software Cerberus 2.0 is shown in Fig. 6-1. Key building blocks

and links among them are highlighted. The most important parts of the VILO consist

of the rightmost three blocks and the Multi-IMU PO is on the bottom left. In VILO,

as Section 4.3.3 explains, solving the nonlinear least square problem represented by

a factor graph is a well-established technique. Using the marginalization to reduce

factor graph size hence maintaining constant computation consumption is also very

standard. It is how different factors are constructed that affects estimation accuracy

the most. The Multi-IMU PO interacts with the VILO in two ways. First, the VILO

uses the contact flag generated by (5.14) in the Multi-IMU PO. Second, Multi-IMU

PO corrects its yaw angle using the VILO output orientation estimation. Compared

to conventional VILO, our method includes special contact preintegration terms that

relate to sensor data from joint encoders and foot IMUs.

149

Body IMU

Foot IMU

Joint Encoder

Figure 6-1: The software architecture of Cerberus 2.0.

6.1.2 Loosely Coupled Leg Residual

An easier way to incorporate information from leg sensors into a visual and inertial-

based factor graph is to leverage the existing PO. As explained in Section 3.3.11,

the PO, either MIPO or SIPO, can output pose estimation at the frequency of

IMU. Therefore along with the IMU preintegration, we can directly use the velocity

estimation from PO to form a residual [158]. Again we focus on the period between

state �̂�𝑘 and �̂�𝑘+1, let 𝜈𝑖 be the PO velocity estimation at time 𝑡𝑖, the associated

covariance of which is 𝜎𝑖. The covariance can be extracted from the estimation

covariance of the PO output. A contact preintegration term is defined as:

�̂�𝑘𝑘+1 =
𝐿∑︁
𝑖=1

𝜈𝑖𝛿𝑡 (6.1)

150

This term is the total body displacement measured by the leg odometry. It is in the

world frame, so a residual is defined as:

𝑟′′(�̂�𝑘, �̂�𝑘+1, 𝑍Δ𝑘) =[︁
(�̂�𝑘+1 − �̂�𝑘)− �̂�𝑘𝑘+1

]︁
, (6.2)

which replaces the leg residual (4.19) in Problem (4.10). The residual covariance for

it is simply:

𝑃 𝑘
𝑘+1 =

𝐿∑︁
𝑖=1

𝜎𝑖𝛿𝑡 (6.3)

This formulation is deemed as “loosely coupled” [130] because the raw sensor data

from foot IMUs and leg sensors are processed by the PO first. So the VILO can-

not denoise or remove bias from the raw sensor information. Intuitively, in this

context, Problem (4.10) calculates an educated weighted average of the output ve-

locities from a VIO and a PO. It is worth noting that, in this scenario, calling (6.1)

“contact preintegration” is not entirely descriptive, as it doesn’t explicitly involve

contact information in the calculation but we maintain this terminology for the sake

of consistency.

6.1.3 Tightly Coupled Leg Residual

On the other hand, the “tightly coupled” approach devises a contact preintegration

term using raw sensor information directly. Biases in foot IMUs and leg kinematic

parameters [163] are explicitly considered and estimated in the VILO framework.

We augment the robot state to be �̂�𝑘 = [�̂�𝑘; �̂�𝑘; �̂�𝑘; �̂�𝑎𝑘; �̂�𝜔𝑘; �̂�𝑓𝑘; �̂�𝑘]. Compared

151

to the state definition in Section 4.3.3, this augmented state contains foot IMU

gyroscope bias �̂�𝑓𝑘 and leg kinematic parameter �̂�𝑘.

From (3.44) and (4.21) we can write a body velocity measurement model tak-

ing body IMU angular velocity, foot IMU angular velocity, joint angles, joint angle

velocities, and biases in the robot state as inputs:

𝑣𝑤 =−𝑅(�̂�𝑘)(𝐽(𝜑)�̇�+ ⌊𝜔𝑏 − �̂�𝑤⌋×𝑔(𝜑))

−𝑅(�̂�𝑘)𝑅𝑏
𝑓 (𝜑)(𝜔𝑓 − �̂�𝑓)× 𝑑𝑅(�̂�𝑘)𝑔(𝜑)/‖𝑅(�̂�𝑘)𝑔(𝜑)‖ (6.4)

Noticing that rotation preservers norm and 𝑅𝑎 × 𝑅𝑏 = 𝑅(𝑎 × 𝑏) for any rotation

matrix 𝑅 and vectors 𝑎 and 𝑏 [103], we can convert (6.4) into 𝑣𝑤 = 𝑅(�̂�𝑘)𝑣𝑏, where

𝑣𝑏 is a body frame vector represents a velocity observation:

𝑣𝑏 = −𝐽(𝜑)�̇�− ⌊𝜔𝑏 − �̂�𝑤⌋×𝑔(𝜑) (6.5)

−𝑑0⌊𝑅𝑏
𝑓 (𝜑)(𝜔𝑓 − �̂�𝑓)⌋×

𝑔(𝜑)

‖𝑔(𝜑)‖
(6.6)

Given this body velocity observation 𝑣𝑏 that directly uses raw sensor data, we

define a tightly coupled contact preintegration term as:

�̂�′𝑘𝑘+1 =
𝐿∑︁
𝑖=1

𝑅(�̂�𝑘
𝑖)𝑣𝑏(𝑖)𝛿𝑡 (6.7)

This term measures a body displacement vector represented in frame 𝑞𝑘. Hence we

152

can define a residual:

𝑟′′′(�̂�𝑘, �̂�𝑘+1, 𝑍Δ𝑘) =⎡⎢⎢⎢⎢⎢⎢⎣
𝑅(�̂�𝑘)

𝑇 (�̂�𝑘+1 − �̂�𝑘)− �̂�′𝑘𝑘+1

�̂�𝜔𝑘+1 − �̂�𝜔𝑘
�̂�𝑓𝑘+1 − �̂�𝑓𝑘
�̂�𝑘+1 − �̂�𝑘

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.8)

The residual covariance is calculated in a similar way as (4.15). We put detailed

derivations in the Appendix.

6.2 Implementation & Experiments

After implementing Cerberus 2.0 as a highly efficient C++ package, we conducted

extensive hardware experiments to evaluate it.

We first describe the sensor hardware implementation and experimental setup.

Then, we evaluate the Multi-IMU PO component individually, highlighting its sig-

nificant performance gain over standard PO. Third, we present the results of various

indoor and outdoor experiments for Cerberus 2.0. The two contact preintegration

methods proposed in Section 6.1 are carefully compared under different locomotion

conditions to examine their robustness. Also, we study how different gait types, gait

frequencies, locomotion speeds, and terrain types affect the estimator accuracy. To

the best of the authors’ knowledge, this is the first systematic study of legged robot

state estimator performance under these conditions.

153

6.2.1 Sensor Hardware

We built the necessary sensor hardware using off-the-shelf low-cost components. A

Unitree Go 1 robot is selected as the locomotion platform, but the state estimator

should work on any quadruped robot system.

The Cerberus 2.0 hardware does not significantly alter the form factor of the Go1

robot. Additional to robot built-in sensor and foot IMUs described in Fig. 5-5, We

also installed an Intel Realsense camera on the robot to provide 15Hz stereo vision

RGB images. An Intel NUC computer with an i7-1165G7 CPU finally collects all

sensor data from the Go1 robot, camera, and the Teensy board to run the Cerberus

2.0 algorithm. The computer also runs a nonlinear predictive control locomotion

controller [42] which has a number of locomotion gaits available.

6.2.2 Evaluation Metrics

It is worth describing the performance metric we are going to use in the experiments

in detail first. We use drift percentage to determine how much the estimated position

deviates from the actual position over the course of long-distance traveling. We also

note that the position to be compared only contains XY directions, for absolute Z

position can be readily measured by fusing barometer pressure data. Along the travel

trajectory, at each time instance 𝑡 we can calculate the total travel distance 𝑠 from

the ground truth data. Also, we denote the estimated position as �̂� and the ground

truth position as 𝑝. Then the drift percentage is:

𝐷𝑅𝐼𝐹𝑇 (𝑡) =
‖𝑝− �̂�‖

𝑠
× 100%

When the robot moves in simple trajectories such as a line or a single loop,

154

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Ground Truth
Standard PO
Multi-IMU PO
VINS-Fusion
Cerberus
Cerberus2-L
Cerberus2-T

Figure 6-2: A comparison of several PO or vision-based baseline methods and Cer-
berus2 variants on two indoor data sequences. In the left figure, the robot uses the
standing trot gait, 0.40s gait time, and 0.2m/s speed target. The right figure is the
result of the robot’s moves using the trot gait, 0.44s gait time, and 0.5𝑚/𝑠 speed.
The average drifts of all methods in these two runs are Standard PO - 7.56%, Multi-
IMU PO - 1.86%, VINS-Fusion - 2.43%, Cerberus - 1.65%, Cerberus2-L 1.15%, and
Cerberus2-T 1.01%.

then the final drift percentage 𝐷𝑅𝐼𝐹𝑇 (𝑇), where 𝑇 is the final trajectory time, is

already informative. If the motion trajectory is more complicated, the average drift

percentage:

𝐴𝑉 𝑅_𝐷𝑅𝐼𝐹𝑇 =
1

𝑁

𝑇∑︁
𝑡=𝑡0

𝐷𝑅𝐼𝐹𝑇 (𝑡)

captures the drift performance over time better, where 𝑁 is the total number of time

instances. Similarly, the median drift or 𝑀𝐸𝐷_𝐷𝑅𝐼𝐹𝑇 can be calculated following

the standard definition.

155

6.2.3 Cerberus 2.0 Evaluation

In this section, we evaluate the position estimation performance of Cerberus 2.0. The

two main formulations of LO preintegration as discussed in Section 6.1.2 and 6.1.3 are

compared through experiments on various data sequences. In addition to comparing

with the ground truth, for each data sequence, we also make comparisons against

baseline methods including Multi-IMU PO, VIO (VINS-Fusion), VILO (Cerberus).

The two Cerberus 2.0 variants are Cerberus2-L for the loosely-coupled formulation

and Cerberus2-T for the tightly-coupled formulation.

Indoor Drift & Robustness Evaluation

We first did the same experiment as discussed in Section 5.5. Estimated trajectories

of two indoor runs are shown in Figure 6-2 as examples. For moderate speeds (≤

0.5𝑚/𝑠, the Multi-IMU PO is comparable with vision-based methods and Cerberus2-

T has better accuracy than the other Cerberus2 variants. But we came to notice

when the robot moves faster, the estimation results become worse. Besides, different

gait types and gait frequencies also cause position drift performance to change.

We aim to understand how different locomotion conditions affect position estima-

tion drifts through a large number of controlled experiments. The three independent

variables we adjust in these experiments are gait type (trot, standing trot, and flying

trot), target moving speed (0.2𝑚/𝑠, 0.4𝑚/𝑠, 0.6𝑚/𝑠, 0.8𝑚/𝑠, 1.0𝑚/𝑠, and 1.2𝑚/𝑠),

and gait time (0.32s, 0.36s, 0.40s, 0.44s, 0.48s, and 0.52s). The foot contact schedule

of each gait type is shown in Fig. 6-3. The trot gait, containing two alternating

double support phases, is widely used in the community as one of the most reliable

gaits. The standing trot gait adds a 50ms stance period after each trot foot switch-

ing, while the flying trot gait adds a 50ms full flight phase. The gait time is defined

156

as the total duration of double support phases. The moving speed is a target speed

that the locomotion controller wants to reach as soon as possible in each experiment

run. A human operator provides the speed target during experiments. For faster

target linear moving speed, the target yaw rate is also scaled up to ensure smooth

turning. We would like to emphasize that no prior work has studied the effect of this

wide range of moving speeds and gait variations on state estimation performance.

57 experiment runs are conducted in the same lab space mentioned in Section

5.5. In each run, we select a set of variable combinations for the robot controller,

and then the robot travels a square trajectory that is used across experiments, as

shown in Fig. 6-2. So during all experiment runs, the visual features along the

trajectory are roughly the same. Although the trajectories are short, the robot

experiences fast rotations, foot slippages, and unexpected contacts when moving at

high speed. Since long gait time will lead to controller instability at high moving

speeds, not all variable combinations are tested. We collect sensor data from one

run into one rosbag and run all baseline methods and Cerberus2 methods using the

sensor data offline to make a fair comparison. All methods use consistent parameters

even though controller parameters change so that we can examine their parameter

robustness. After obtaining the estimation results for all runs, these results were

then categorized into three groups for focused analysis of each independent variable.

In Fig. 6-3 we compare the average drifts of different gaits. Among the three

gaits, the trot gait has the lowest drift and the flying trot has the largest. Because

of the airborne phase, the flying trot makes the robot experience large impacts upon

touchdown so the worst performance is not surprising. Between the trot gait and the

standing trot, the trot has a shorter contact time and fewer rolling contacts, which

could explain its better performance. Therefore standard trot gait is preferred for

achieving the best position estimation performance.

157

0% Gait Phase 100%

Leg1

Leg2

Leg3

Leg4

Standing Trot

0% Gait Phase 100%

Leg1

Leg2

Leg3

Leg4

Trot

0% Gait Phase 100%

Leg1

Leg2

Leg3

Leg4

Flying Trot

Standing Trot Trot Flying Trot
0

2

4

6

8

10

12

14

D
ri

ft
(%

)

Standard PO
Multi-IMU PO
VINS-Fusion
Cerberus
Cerberus2-L
Cerberus2-T

Figure 6-3: Top: Leg contact schedules of each gait type. Black represents time
periods where the leg is in contact with the ground. Bottom: Box plots of average
drifts of different methods. Results are categorized by gait types. For each type, we
show the drift statistics from all experiment runs for each individual method.

158

0.36s 0.40s 0.44s 0.48s 0.52s
0

2

4

6

8

10

12

14

D
ri

ft
(%

)

Standard PO
Multi-IMU PO
VINS-Fusion
Cerberus
Cerberus2-L
Cerberus2-T

Figure 6-4: Box plots for estimation results of different gait frequencies.

0.2m/s 0.4m/s 0.6m/s 0.8m/s 1.0m/s
0

2

4

6

8

10

12

14

D
ri

ft
(%

)

Standard PO
Multi-IMU PO
VINS-Fusion
Cerberus
Cerberus2-L
Cerberus2-T

Figure 6-5: Box plots for estimation results of different movement speeds.

159

In Fig. 6-4, we can see that as gait time increases, the drift estimation results of

the Multi-IMU PO monotonically decrease while other vision-based methods do not

show a clear changing pattern. The VINS-Fusion even got much worse with a gait

time of 0.52s. The reason is as gait time increases, the robot will have larger body

displacement per stride hence larger joint angle velocity. According to Kalman filter

observability analysis [163], larger joint angle velocity will improve the numerical

condition of the Kalman gain. On the other hand, as long as the robot controls its

orientation well, gait time does not affect camera observation accuracy. However, if

the gait time is too long and the robot target velocity is also high, the robot legs may

exceed the workspace limit, resulting in unstable locomotion, which leads to rapid

body rotation and tampers the cameras’ imaging quality. Around 0.44s gait time,

Multi-IMU PO (min drift 1.31%, average drift 1.50%) and Cerberus2-L (min drift

1.08%, average 2.07%) achieve the best drift performance.

As shown in Fig. 6-5, when robot target speed increases, VINS-Fusion’s drift

monotonically increases, so do Standard PO, Cerberus, and Cerberus2-T. However,

Multi-IMU PO and Cerberus2-L’s drift performances are always around 2% until the

target speed is higher than 1𝑚/𝑠. By looking at sensor data we notice at 1𝑚/𝑠 some

foot IMUs’ accelerometer readings occasionally exceed the range limit (±150𝑚/𝑠2).

Our filter implementation does not consider sensor saturation, therefore it will diverge

if saturation happens often. Another interesting phenomenon is in the speed range

0.6𝑚/𝑠-0.8𝑚/𝑠, Multi-IMU PO and Cerberus2-L perform the best. The reason could

be faster speed leads to fewer foot contact switches along a fixed travel distance,

which reduces the effect of locomotion disturbances in the same way as increasing

gait time.

Between Cerberus2-L and Cerberus2-T, across all experiments, Cerberus2-T demon-

strates a much higher variance. Although in some cases Cerberus2-T achieves better

160

Figure 6-6: Different terrains during outdoor experiments.

161

performance, most of the time it is worse than Ceberus2-L or other baseline methods.

This is because adding tightly coupled leg residuals not only introduces additional

noise parameters to tune but also increases the problem’s nonlinearity. Besides, be-

cause of the outlier rejection mechanism of the Multi-IMU PO, the velocity in the

loosely coupled leg residual is less affected by foot impact and slippage, while the

tightly coupled leg residual can only rely on the Huber norm in the factor graph for

outlier rejection. Thus, our conclusion is that Cerberus2-L is the preferred choice

for Multi-IMU VILO, even though it is a loosely coupled method. We also notice in

the indoor environment, Multi-IMU PO, being a proprioceptive sensing method, is

very competitive compared to the vision-based methods. This indicates that if we

have a submodule in the system that already generates precise estimations, using it

in a loosely coupled way could outperform the tightly coupled approaches that do

not use this submodule.

Outdoor Drift & Terrain Robustness Evaluation

To fully test the accuracy, adaptability, and robustness of Cerberus 2.0, we let the

robot travel over uneven terrains for long distances (see Figure 6-6 for screenshots

showing the terrains). A dataset that includes 9 experiment runs with a total length

of over 2.5km is collected. During each run, in addition to collecting sensor data, we

also mounted an iPhone on the robot, from which we measured a separate sequence

of GPS and IMU data from the cellphone. Then we use an inertial navigation filter

to recover the ground truth.

For each sequence, we compare Cerberus 2.0 with VINS-Fusion, Cerberus, and

ORB-SLAM3, an open-source localization library that has a multi-map loop closure

ability that should improve estimation accuracy. In Figure 6-7, we visualize the

162

estimation results of 4 outdoor runs.

Figure 6-9 demonstrates the robustness of Cerberus 2.0 during two indoor/out-

door switchings. In Figure 6-8, estimation results for the robot traveling along a

hiking trail are shown. Because of gravel and plants on the trail surface, the robot

often experiences foot slippage and unexpected contact.

Since our robot sensor is low cost, robot movement is agile, and experiment

runs involve large-scale terrain variations, baseline vision-based methods, and PO

methods often fail or have large drift. Among all methods and across all experiments,

Cerberus2-L has the best performance.

Run Time Discussion

Cerberus 2.0 can run in real-time on robot hardware with moderate computation

resources. In our implementation, either Cerberus2-L or Cerberus2-T takes less than

60ms to finish a single factor graph solve on the Intel i7-1165G7 CPU, which is

shorter than the camera image arriving interval (1/15s or 66.7ms).

To further ensure run time consistency, Cerberus 2.0 runs on a Linux kernel with

the real-time patch, thus the main factor graph optimization thread can be set to

a higher priority to minimize operation system thread switching interruption. More

implementation details and run time tips can be viewed in our open-source codebase.

6.3 Limitation & Future Work

The biggest limitation of Multi-IMU PO and VILO is we do not have the capability

of dealing with sensor saturation. This is the primary reason for estimator failures

if the robot motion controller is not well designed. Incorporating some signal re-

construction or saturation detection mechanism to further improve robustness is a

163

−60 −40 −20 0 20
−10

0

10

20

30

40

−10 0 10 20 30 40 50 60

0

20

40

60

80

−60 −40 −20 0 20 40

0

20

40

60

80

100

0 50 100 150 200

−150

−100

−50

0

50

Ground Truth
Standard PO
Multi-IMU PO
VINS-Fusion
ORB-SLAM3
Cerberus
Cerberus2-L
Cerberus2-T

Figure 6-7: Estimation results of four outdoor runs. The average drift percentages
of each method in each run are summarized in Table 6.1.

Top-left Top-right Bottom-left Bottom-right
Standard PO 17.67% 19.62% 14.15% 26.24%

Multi-IMU PO 2.70% 1.11% 1.07% break
VINS-Fusion 3.04% break 9.75% 19.61
ORB-SLAM3 1.83% break 5.71% break

Cerberus 4.95% 8.41% 8.57% break
Cerberus2-L 1.76% 2.84% 2.04% 2.73%
Cerberus2-T 4.52% 1.88% 7.53% 12.77%

Table 6.1: The drift value of all outdoor experiment runs. Each column lists the
results of one run. Across all results, Multi-IMU PO achieves the lowest drift values,
while Cerberus2-L has comparable or better performance and improved robustness.

164

Figure 6-8: On a challenging hiking trail, Cerberus2-L (red) achieves lower than
10% drift performance while all other methods either fail or have drift larger than
10%. The estimation result of Cerberus2-L agrees with the ground truth (blue) and
underlying satellite image very well. The map can be viewed online.

Figure 6-9: In an over 500m experiment run, a Unitree Go1 robot travels through
a parking garage over various terrain types. The proposed Cerberus 2.0 algorithm
demonstrates great estimation robustness and accuracy. Except for baseline method
Cerberus and the Cerberus2-L method, all other methods break along the way. The
ground truth trajectory is also wrong inside the garage due to weak GPS signals.
After the robot exited the garage, the GPS was restored. Cerberus2-L has < 0.5%
drift even after traveling for long distances with indoor/outdoor switching. The map
can be viewed online.

165

https://www.google.com/maps/d/u/0/edit?mid=1ek1hU02ADSrNKmgSpMtXkDp6IPvOf6E&ll=40.41327556703216%2C-79.95071363609686&z=19
https://www.google.com/maps/d/u/0/edit?mid=1bp65QUnbff6kFFlv7H4fXRPqdb5n6ps&ll=40.44345689147336%2C-79.94090941164713&z=19

promising future work.

In VILO, the selection of residual covariance values is mostly determined by trial

and error. Since the factor graph optimizer only weighs residual terms relatively, the

absolute value of covariances may not have physical meaning. Although there exist

auto-tuning methods for Kalman filters, auto-tuning for factor graphs remains unex-

plored. Besides, due to vibrations and impacts, the actually sensor noise model may

be heteroscedastic instead of constant. A more careful study of sensor noise char-

acteristics in legged robot state estimation could not only benefit legged locomotion

but also shed light on other sensor fusion problems.

6.4 Conclusions

In this chapter, we studied a multi-sensor visual-inertial-leg odometry hardware and

algorithm solution that fuses information from one camera, multiple inertial sensors,

and multiple motor encoders. The inclusion of inertial measurement units on the

robot’s feet significantly improves odometry accuracy. By comparing various for-

mulations of visual-inertial-leg odometry under different locomotion conditions, we

gained insights into both the theory and best implementation practices. In addition

to this thesis chapter, we open-sourced our code implementation, Cerberus 2.0, along

with a large dataset.

166

Chapter 7

Equality Constrained LQR With The

Factor Graph

In the previous chapters, we have explored visualizing trajectory optimization as a

graphical model and using the factor graph as the backbone for state estimation.

Clearly, they are mathematically closely related because the underlying optimization

algorithm is the same. In this chapter, we focus on the factor graph to conduct a

theoretical analysis, demonstrating that this graphical model can be a powerful tool

to solve not only state estimation problems but also control problems.

7.1 Motivation

The Equality Constrained Linear Quadratic Regulator (EC-LQR) is an important

extension [81, 133] of the Linear Quadratic Regulator (LQR) [71]. The standard

finite-horizon discrete-time LQR problem contains (1) quadratic costs on the state

trajectory and the control input trajectory and (2) system dynamics constraints

167

which enforce that the current state is determined by a linear function of the previous

state and control. In the EC-LQR, auxiliary constraints are introduced to enforce

additional linear equality relationships on one or more state(s) and/or control(s).

Such auxiliary constraints occur commonly in robotics applications [81], especially

in iterative nonlinear controllers or as local controllers for open-loop trajectories from

trajectory optimization approaches [117].

In many important problems auxiliary constraints violate the Markov assumption,

yet such constraints are rarely considered in existing EC-LQR approaches. We clas-

sify auxiliary constraints in EC-LQR problems into two categories which we term local

constraints and cross-time-step constraints. A local constraint only contains a state

and/or control from the same time step. Examples of local constraints include initial

and terminal conditions on states, contact constraints, and states along a predefined

curve. In contrast, a cross-time-step constraint involves multiple states and controls

at different time instances. While transcribing cross-time-step constraints into local

ones is possible by adding additional “book-keeping” states or other manual augmen-

tations, doing so may be unsuitable for online operation and many cross-time-step

constraints. Such non-Markovian constraints are pervasive in many robotics applica-

tions. For example, a legged robot’s leg configuration must return to the same state

after a period of time during a periodic gait [43]. In optimal allocation with resource

constraints [20], the sum of control inputs is constrained to be some constant. Our

goal is to solve for both optimal trajectories and optimal feedback control policies

in EC-LQR problems with local and cross-time-step constraints in linear time with

respect to the trajectory length, which no existing EC-LQR methods can achieve.

Reformulating control problems as inference problems [72, 85, 146, 155] is a grow-

ing alternative to common trajectory optimization [34, 74, 117] and dynamic pro-

gramming (DP) approaches for optimal control [81, 88, 133] . While trajectory opti-

168

𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

𝑥𝑇0𝑄𝑥𝑥0𝑥0 𝑥𝑇1𝑄𝑥𝑥1𝑥1 𝑥𝑇2𝑄𝑥𝑥2𝑥2

𝑢𝑇0𝑄𝑢𝑢0𝑢0 𝑢𝑇1𝑄𝑢𝑢1𝑢1

𝑥1 = 𝐹𝑥0𝑥0 + 𝐹𝑢0𝑢0 𝑥2 = 𝐹𝑥1𝑥1 + 𝐹𝑢1𝑢1

𝐺𝑥0𝑥0 +𝐺𝑢0𝑢0 + 𝑔𝑙0 = 0𝐺𝑥1𝑥1 +𝐺𝑢1𝑢1 + 𝑔𝑙1 = 0 𝐺𝑥2𝑥2 + 𝑔𝑙2 = 0

𝑆0𝑥0 + 𝑆2𝑥2 + 𝑠 = 0

Quadratic Objective Factor
Linear Constraint Factor

Figure 7-1: The factor graph representation of an Equality Constrained Linear Quadratic Regular
(EC-LQR) problem. Circles with letters are states or controls. Filled squares and circles represent
objectives and constraints that involve the state or controls to which they are connected. The red
square represents a cross-time-step constraint.

mization focuses on open-loop trajectories rather than feedback laws, and a method

using DP to handle cross-time-step constraints has yet to be proposed, control as in-

ference may offer the advantages of both. Factor graphs, in particular, are a common

tool for solving inference problems [36] and have recently been applied to optimal

control [27, 38].

We propose a novel formulation using factor graphs [36] to efficiently solve the

EC-LQR problem with both local and cross-time-step constraints in linear time with

respect to trajectory length. We demonstrate how to represent the EC-LQR problem

as a factor graph (shown in Fig. 7-1), In the graph, the cost function is Gaussian

factors; the system dynamics are hard constraint factors; the equality constraints

are also hard constraint factors. and apply the variable elimination (VE) algorithm

[12] on the factor graph to solve for the optimal trajectories and optimal feedback

control policies. The flexibility of the factor graph representation allows cross-time-

step constraints with arbitrary numbers of variables to be seamlessly handled. As

169

long as the maximum time index difference of variables involved in each constraint

is bounded, the computational complexity stays linear with trajectory length. The

approach in this chapter matches the computational complexity of standard dynamic

programming techniques [2], but also has the added benefit of handling cross-time-

step constraints.

7.2 Related Work

Trajectory optimization methods typically transcript a problem into a Quadratic

Programming (QP) [6] or NonLinear Programming (NLP) [74] problem which can

be efficiently solved to obtain open-loop trajectories of nonlinear systems. Local

controllers can be used to track the open-loop trajectories generated [117]. Designing

local controllers that obey equality constraints motivates EC-LQR problems.

For EC-LQR problems with just local constraints, DP-based approaches can gen-

erate both the optimal trajectories and feedback control policies. Solving standard

LQR using DP is well understood in control theory [71]. [117] tackles EC-LQR

with state-only local constraints by projecting system dynamics onto the constraint

manifold. [133] extends the DP approach by using Karush-Kuhn-Tucker (KKT) con-

ditions [20] to absorb auxiliary constraints into the cost function, but its computation

time grows with the cube of the trajectory length for certain auxiliary constraints.

[81] solves the EC-LQR with local constraints in linear complexity by adding a new

auxiliary constraint dubbed “constraint_to_go” at each time step during DP steps.

Control as inference, in which a control problem is reformulated and solved as an

inference problem, has gained considerable attention [85, 146]. Probabilistic Graph-

ical Models (PGMs), which are commonly used for inference, have been applied to

optimal control problems [72, 155] because they describe dependencies among vari-

170

𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

𝑥𝑇0𝑄𝑥𝑥0𝑥0 𝑥𝑇1𝑄𝑥𝑥1𝑥1 𝑥𝑇2𝑄𝑥𝑥2𝑥2

𝑢𝑇0𝑄𝑢𝑢0𝑢0 𝑢𝑇1𝑄𝑢𝑢1𝑢1

𝑥1 = 𝐹𝑥0𝑥0 + 𝐹𝑢0𝑢0𝑥2 = 𝐹𝑥1𝑥1 + 𝐹𝑢1𝑢1

Quadratic Objective Factor
Linear Constraint Factor

Figure 7-2: Factor graph of a standard LQR problem with trajectory length 𝑇 = 2.

ables while maintaining sparsity in the graphical representation. Therefore, PGMs

can solve for variable distributions efficiently by exploiting sparsity [78]. The Markov

assumption gives optimal control problems a “chain” structure when represented as

PGMs allowing linear computational complexity with respect to trajectory length

[4, 27, 146, 155], but PGMs can also exploit sparsity for more complex (non-chain)

structures which motivates using PGMs for cross-time-step constraints.

Factor graphs, a type of PGM, have been successfully applied to robot percep-

tion and state estimation [36]. Prior works have demonstrated that the variable

elimination (VE) algorithm [12] on factor graphs can efficiently factorize the graphs’

equivalent matrix representations in order to infer the posterior distributions of ran-

dom variables. This procedure is called factor graph optimization. Moreover, factor

graphs can encode constraints [33]. Other than estimation, factor graphs can be used

to do motion planning [38, 141]. Standard LQRs with factor graphs are considered

in [27, 155] without auxiliary constraints.

171

𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

→
𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

𝑥*2(𝑥1, 𝑢1) = argmin
𝑥2

𝑥𝑇2𝑄𝑥𝑥𝑇
𝑥2

s.t. 𝑥2 = 𝐹𝑥1
𝑥1 + 𝐹𝑢1

𝑢1
→ 𝑥*2(𝑢1, 𝑥1) = 𝐹𝑥1

𝑥1 + 𝐹𝑢1
𝑢1

𝜑*𝑥2
(𝑢1, 𝑥1) = 𝑥*𝑇2 𝑄𝑥𝑥𝑇

𝑥*2

𝑊𝑥2 𝑥2 𝑢1 𝑥1[︂
𝐼
∞

]︂ [︂
𝑄

1/2
𝑥𝑥𝑇 0 0 0

𝐼 −𝐹𝑢1 −𝐹𝑥1 0

]︂
→

𝑊 ′
𝑥2

𝑥2 𝑢1 𝑥1[︂
∞
𝐼

]︂ [︃
𝐼 −𝐹𝑢1 −𝐹𝑥1 0

0 𝑄
1
2
𝑥𝑥𝑇𝐹𝑢1 𝑄

1
2
𝑥𝑥𝑇𝐹𝑥1 0

]︃
(a) Eliminate 𝑥2

𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

→
𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

𝑢*1(𝑥1) = argmin
𝑢1

𝜑*𝑥2
(𝑥1, 𝑢1)

+ 𝑢𝑇1𝑄𝑢𝑢1
𝑢1
→

𝑢*1(𝑥1) =−𝐾1𝑥1

𝜑*𝑢1
(𝑥1) =(𝐾1𝑥1)

𝑇𝑄𝑢𝑢1
(𝐾1𝑥1)

+ 𝜑*𝑥2
(𝑥1,−𝐾1𝑥1)

𝑊𝑢1
𝑢1 𝑥1[︂

𝐼
𝐼

]︂[︃
𝑄

1
2
𝑥𝑥𝑇𝐹𝑢1

𝑄
1
2
𝑥𝑥𝑇𝐹𝑥1

0

𝑄
1
2
𝑢𝑢1 0 0

]︃
→

𝑊 ′
𝑢1

𝑢1 𝑥1[︂
𝑅1

𝐼

]︂ [︂
𝐼 𝐾1 0

𝐸1 0

]︂
(b) Eliminate 𝑢1

Figure 7-3: Two variable eliminations for the LQR problem. Each sub-figure consists of three
rows showing three equivalent representations: the factor graph (top), constrained optimization
(middle), and modified Gram-Schmidt process on [𝐴𝑖|𝑏𝑖] (bottom). The arrows in the factor graphs
show variable dependencies. The thin horizontal arrows separate cases before and after elimination.
Terms and symbols in the same color correspond to the color-coded variable elimination steps in
Section 7.3. Note that the matrix factorization representation consists of the weight vector, 𝑊𝑖,
next to the sub-matrix [𝐴𝑖|𝑏𝑖].

172

7.3 Preliminary

We first demonstrate how to represent standard LQR, Problem 7.2 with only con-

straint (7.2b), as the factor graph shown in Fig. 7-2 and subsequently obtain the

optimal trajectory and optimal feedback control policy using VE.

Factor graphs can be interpreted as describing either a joint probability distribu-

tion with conditional independencies or, as we focus on in this chapter, an equivalent

least-squares problem derived from minimizing the negative log-likelihood. A factor

graph is a bipartite graph consisting of variables and factors connected by edges,

where a factor can be viewed either as a joint probability density or least squares

objective over the variables it is connected to.

We begin by showing how the probabilistic view of factor graphs is equivalent

to a least squares minimization [36]. We construct factor graph to describe a joint

probability distribution of the variables 𝑋 = [x;u]. For Gaussian distributions, the

probability distribution for a single objective or constraint factor 𝜑𝑘 can be written

in matrix form as
𝜑𝑘(𝑋𝑘) ∝ exp

{︀
−1

2
‖𝐴𝑘𝑋𝑘 − 𝑏𝑘‖2Σ𝑘

}︀
where exp is the exponential function and 𝑋𝑘 contains the variables connected to the

factor. 𝐴𝑘 and 𝑏𝑘 are a matrix and a vector with problem-specific values, Σ𝑘 is the

covariance of the probability distribution, and || · ||2Σ := (·)𝑇Σ−1(·) denotes the square

of the Mahalanobis norm. 𝐴𝑘, 𝑏𝑘, and Σ𝑘 together define the probability density of

the factor.

The product of all factors is the posterior distribution of 𝑋 whose MAP estimate

173

solves the least squares problem [36]:

𝑋𝑀𝐴𝑃 = argmax
𝑋

𝜑(𝑋) = argmin
𝑋

− log(
∏︁
𝑘

𝜑𝑘(𝑋𝑘))

= argmin
𝑋

∑︁
𝑘

‖𝐴𝑘𝑋𝑘 − 𝑏𝑘‖2Σ𝑘
= argmin

𝑋
‖𝐴𝑋 − 𝑏‖2Σ (7.1)

where 𝐴 and Σ contain 𝐴𝑘 and Σ𝑘 on the block diagonal respectively and 𝑏 stacks all

𝑏𝑘 vertically. In this formulation, each factor 𝜑𝑘 corresponds to a block row in [𝐴|𝑏].

Defining the weight matrix 𝑊 := Σ−1, 𝑋𝑀𝐴𝑃 minimizes a weighted least squares

expression (𝐴𝑋 − 𝑏)𝑇𝑊 (𝐴𝑋 − 𝑏).

The objective factors in Fig. 7-2 are 𝜑𝑜𝑏𝑗𝑥(𝑥𝑡) ∝ exp{−1
2
‖𝑄1/2

𝑥𝑥𝑡𝑥𝑡‖2} and 𝜑𝑜𝑏𝑗𝑢(𝑢𝑡) ∝

exp{−1
2
‖𝑄1/2

𝑢𝑢𝑡𝑢𝑡‖2}, while the constraint factors are 𝜑𝑑𝑦𝑛(𝑥𝑡+1, 𝑥𝑡, 𝑢𝑡) ∝ exp{−1
2
‖𝑥𝑡+1−

𝐹𝑥𝑡𝑥𝑡 − 𝐹𝑢𝑡𝑢𝑡‖2Σ𝑐
} where the covariance Σ𝑐 = 0 creates infinite terms in 𝑊 . When

factor graphs have factors with zero covariance, the least squares problem turns into

a constrained least squares problem which we can solve using e.g. modified Gram-

Schmidt [50]. If linear terms are desired in the cost function in (7.2a) (e.g. track a

non-zero setpoint), we can always express the objective factor in a Gaussian form as

𝜑𝑜𝑏𝑗𝑥(𝑥𝑡) ∝ exp{−1
2
‖𝑄1/2

𝑥𝑥𝑡(𝑥𝑡 − 𝑥𝑟𝑒𝑓)‖2}, where 𝑥𝑟𝑒𝑓 is some tracking target.

The VE algorithm is a method to solve (7.1) while exploiting the sparsity of 𝐴 by

solving for one variable at a time. For a variable 𝜃𝑖 ∈ 𝑋, we can identify its separator

𝑆𝑖: the set of other variables sharing factors with 𝜃𝑖. Then we extract sub-matrices

𝐴𝑖, 𝑊𝑖, and sub-vector 𝑏𝑖 from the rows of 𝐴, 𝑊 , and 𝑏 such that [𝐴𝑖|𝑏𝑖] contains all

factors connected to 𝜃𝑖. We collect the rows in [𝐴𝑖|𝑏𝑖] with finite weights to define

objective factor 𝜑𝑖(𝜃𝑖, 𝑆𝑖) and rows with infinite weights to define constraint factor

𝜓𝑖(𝜃𝑖, 𝑆𝑖). Then we “eliminate” variable 𝜃𝑖 following 3 steps1:
1In the probabilistic form, steps 2 and 3 would come from factoring 𝜑𝑖(𝜃𝑖, 𝑆𝑖)𝜓𝑖(𝜃𝑖, 𝑆𝑖) ∝

𝑝(𝜃𝑖|𝑆𝑖)𝑝(𝑆𝑖). For Gaussian distributions, 𝜃*𝑖 (𝑆𝑖) = 𝐸[𝑝(𝜃𝑖|𝑆𝑖)] and 𝜑*𝑖 (𝑆𝑖)𝜓
*
𝑖 (𝑆𝑖) = 𝑝(𝑆𝑖).

174

Step 1. Identify all the factors adjacent to 𝜃𝑖 to get [𝐴𝑖|𝑏𝑖]. Split [𝐴𝑖|𝑏𝑖] into 𝜑𝑖(𝜃𝑖, 𝑆𝑖)

and 𝜓𝑖(𝜃𝑖, 𝑆𝑖).

Step 2. Solve the (constrained) least squares problem:

𝜃*𝑖 (𝑆𝑖) = argmin
𝜃𝑖

𝜑𝑖(𝜃𝑖, 𝑆𝑖) s.t. 𝜓𝑖(𝜃𝑖, 𝑆𝑖) = 0

using modified Gram-Schmidt or other constrained optimization methods [20,

Ch.10]. 𝜃*𝑖 (𝑆𝑖) denotes that 𝜃*𝑖 is a function of the variables in 𝑆𝑖.

Step 3. Substitute 𝜃𝑖 ← 𝜃*𝑖 by replacing the factors 𝜑𝑖(𝜃𝑖, 𝑆𝑖) and 𝜓𝑖(𝜃𝑖, 𝑆𝑖) with

𝜑*
𝑖 (𝑆𝑖) := 𝜑𝑖(𝜃

*
𝑖 , 𝑆𝑖) and 𝜓*

𝑖 (𝑆𝑖) := 𝜓𝑖(𝜃
*
𝑖 , 𝑆𝑖), respectively, in [𝐴|𝑏].

We follow an elimination order [78] to eliminate one variable 𝜃𝑖 ∈ 𝑋 at a time.

After all variables are eliminated, the factor matrix 𝐴 is effectively converted into

an upper-triangular matrix 𝑅 allowing 𝑋 to be solved by matrix back-substitution.

Therefore, one interpretation of the VE algorithm is performing sparse QR factor-

ization on 𝐴 [36].

To apply VE to the LQR factor graph in Fig. 7-2, we choose the ordering

𝑥𝑁 , 𝑢𝑁−1, 𝑥𝑁−1, . . . , 𝑥0 and execute Steps 1-3 to eliminate each variable. This order

is chosen to generate feedback policies where the controls are functions of the present

states. When eliminating a state 𝑥𝑖 for the special case of LQR, the constrained least-

squares problem in Step 2 is trivially solved as 𝑥*𝑖 (𝑢𝑖−1, 𝑥𝑖−1) = 𝐹𝑢𝑢𝑖−1+𝐹𝑥𝑥𝑖−1. Ad-

ditionally, 𝜓*
𝑥𝑖

will be empty since 𝜓𝑥𝑖
(𝑥*𝑖 , 𝑢𝑖−1, 𝑥𝑖−1) is satisfied for any choice of 𝑢𝑖−1

and 𝑥𝑖−1. Fig. 7-3a shows the factor graphs, corresponding optimization problems,

and sub-matrices [𝑊𝑖][𝐴𝑖|𝑏𝑖] before and after eliminating 𝑥2.

The optimal feedback control policy emerges when eliminating a control 𝑢𝑖. The

combined constraint factor 𝜓𝑢𝑖
is empty (since 𝜓*

𝑥𝑖+1
is empty), so Step 2 reduces to

175

an unconstrained minimization problem. To solve it using QR factorization, split

the objective ||𝐴𝑖[𝑢;𝑥]||22 = ||𝑅𝑖𝑢+ 𝑇𝑖𝑥||22 + ||𝐸𝑖𝑥||22 using the QR factorization 𝐴𝑖 =

𝑄

⎡⎣𝑅𝑖 𝑇𝑖

0 𝐸𝑖

⎤⎦ noting that 𝑄 is orthogonal and thus doesn’t change the norm. Then,

𝑢*𝑖 (𝑥𝑖) = −𝐾𝑖𝑥𝑖 where 𝐾𝑖 := 𝑅−1
𝑖 𝑇𝑖 efficiently optimizes the first term and 𝜑*

𝑢𝑖
(𝑥𝑖) =

||𝐸𝑖𝑥||22 is the new factor on 𝑥. The elimination is shown in Fig. 7-3b.

Furthermore, the cost_to_go (or “value function” [9]), which commonly appears

in DP-based LQR literature, is visually evident in the (right) factor graph from Fig.

7-3b as the sum of the two unary factors on 𝑥1:

cost_to_go1(𝑥1) = 𝑥𝑇1𝑄𝑥1 + 𝑥𝑇1𝐸
2
1𝑥1.

Continuing to eliminate the rest of the variables reveals the general formula of the

cost_to_go after applying block-QR elimination to solve for 𝐾𝑖 and 𝐸𝑖:

cost_to_go𝑖(𝑥𝑖) = 𝑥𝑇𝑖 (𝑄𝑥𝑥𝑡 + 𝐹 𝑇
𝑥𝑡
𝑉𝑖+1𝐹𝑥𝑡 −𝐾𝑇

𝑖 𝐹
𝑇
𝑢𝑖
𝑉𝑖+1𝐹𝑥𝑡)𝑥𝑖

where 𝑉𝑖+1 comes from 𝜑*
𝑢𝑖
(𝑥𝑖) + 𝑥𝑇𝑖 𝑄𝑥𝑥𝑡𝑥𝑖 = 𝑥𝑇𝑖 𝑉𝑖𝑥𝑖.

7.4 Problem And Method

In this section we first formulate the standard LQR and EC-LQR problems following

the notation used in [81]. Then we solve a standard LQR problem as a factor graph

and review relevant concepts related to factor graphs. Next, we solve EC-LQR with

local constraints using factor graphs and compare our algorithm to the one proposed

by [81], the most recent DP-based approach. Finally, we show how our method

handles EC-LQR with cross-time-step constraints.

176

7.4.1 Problem Formulation

For a robotic system with state 𝑥𝑡 ∈ R𝑛 and control input 𝑢𝑡 ∈ R𝑚, we de-

fine a state trajectory as x = [𝑥0, 𝑥1, . . . , 𝑥𝑇] and control input trajectory as u =

[𝑢0, 𝑢1, . . . , 𝑢𝑇−1] where 𝑇 is the trajectory length. The optimal control input trajec-

tory u* and its corresponding state trajectory x* are the solution to the constrained

linear least squares problem:

min
u

𝑥𝑇𝑇𝑄𝑥𝑥𝑇
𝑥𝑇 +

𝑇−1∑︁
𝑡=0

(𝑥𝑇𝑡 𝑄𝑥𝑥𝑡𝑥𝑡 + 𝑢𝑇𝑡 𝑄𝑢𝑢𝑡𝑢𝑡) (7.2a)

s.t. 𝑥𝑡+1 = 𝐹𝑥𝑡𝑥𝑡 + 𝐹𝑢𝑡𝑢𝑡 (7.2b)

𝐺𝑥𝑡𝑥𝑡 +𝐺𝑢𝑡𝑢𝑡 + 𝑔𝑙𝑡 = 0, 𝑡 ∈ 𝒞 (7.2c)

𝐺𝑥𝑇
𝑥𝑇 + 𝑔𝑙𝑇 = 0 (7.2d)∑︁

𝑖∈𝐶𝑘𝑥

𝑆𝑥𝑘𝑖𝑥𝑖 +
∑︁
𝑗∈𝐶𝑘𝑢

𝑆𝑢𝑘𝑗𝑢𝑗 + 𝑠𝑘 = 0 (7.2e)

where 𝑄𝑥𝑥𝑇
, 𝑄𝑥𝑥𝑡 , and 𝑄𝑢𝑢𝑡 are positive definite matrices defining the cost function;

𝐹𝑥𝑡 and 𝐹𝑢𝑡 define the system dynamics at time 𝑡; constraints (7.2c) and (7.2d) are

local auxiliary constraints; and constraint (7.2e) is a new formulation for cross-time-

step constraints. In (7.2c) and (7.2d), 𝐺𝑥𝑡 ∈ R𝑙𝑡×𝑛, 𝐺𝑢𝑡 ∈ R𝑙𝑡×𝑚, and 𝑔𝑙𝑡 ∈ R𝑙𝑡

form local constraints with constraint dimension 𝑙𝑡; 𝒞 is the set of time steps where

a local constraint, such as initial state constraint, applies; and 𝐺𝑥𝑇
and 𝑔𝑙𝑇 form a

local constraint with dimension 𝑙𝑇 on the final step. In the cross-time-step constraint

(7.2e), 𝑆𝑥𝑘𝑖 ∈ R𝑐𝑡×𝑛, 𝑆𝑢𝑘𝑗 ∈ R𝑐𝑡×𝑚, and 𝑠𝑘 ∈ R𝑐𝑡 form constraints on a set of states

𝑥𝑖 and controls 𝑢𝑗 where 𝑘 is the index of the cross-time-step constraint. In this

chapter we focus on representing quadratic cost in the factor graph, but linear terms

in the cost function can be incorporated too as shown in the next section.

177

7.4.2 EC-LQR with Local Constraints

The factor graph representation of EC-LQR with only local constraints (7.2c) and

(7.2d) in Problem 7.2 is the same as the factor graph in Figure 7-1 but without the

red square marked “cross-time-step constraint”. We still use the same elimination

order: 𝑥2, 𝑢1, 𝑥1, 𝑢0, 𝑥0 to execute VE.

Eliminating a state

The process for eliminating a state involves one more constraint when generating

𝜓*
𝑥𝑖
(𝑆𝑥𝑖

), but solving for 𝑥𝑖 remains the same as in standard LQR case. Figure 7-4a

shows the process of eliminating 𝑥2.

Eliminating a control

The process for eliminating a control is a constrained minimization with some con-

straints on 𝑢𝑖 derived from 𝜓*
𝑥𝑖+1

(𝑢𝑖, 𝑥𝑖) and/or 𝐺𝑥𝑖
𝑥𝑖+𝐺𝑢𝑖

𝑢𝑖+ 𝑔𝑙𝑖 = 0. The elimina-

tion procedure is shown in Figure 7-4b. From the result of eliminating 𝑢1 as shown

on the right in Figure 7-4b, we observe that

• the optimal control policy 𝑢*1(𝑥1) = −𝐾1𝑥1 + 𝑘1 falls out,

• 𝜑*
𝑢1
(𝑥1) = ||𝑃 1/2

1 𝑥1 − 𝑝1||2 corresponds to the cost_to_go(𝑥1) = 𝑥𝑇1 𝑉1𝑥1 − 𝑣1𝑥1
from [81] where 𝑉1 = 𝑃1 +𝑄𝑥𝑥1 and 𝑣1 = 2𝑝𝑇1 𝑃1, and

• 𝜓*
𝑢1

= 𝐻1𝑥1−ℎ1 = 0 corresponds to the constraint_to_go(𝑥1) = 𝐻1𝑥1−ℎ1 = 0

from [81]

We continue with VE to eliminate the remaining variables similarly. After each

𝑢𝑖 is eliminated, we can obtain an optimal control policy, constraint_to_go, and

178

𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

→

𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

𝑥*2(𝑥1, 𝑢1) = argmin
𝑥2

𝑥𝑇2𝑄𝑥𝑥𝑇
𝑥2

s.t. 𝐺𝑥2
𝑥2 − 𝑔𝑙2 = 0

𝑥2 − 𝐹𝑢1
𝑢1 − 𝐹𝑥1

𝑥1 = 0

→
𝑥*2(𝑢1, 𝑥1) = 𝐹𝑥1𝑥1 + 𝐹𝑢1𝑢1

𝜑*𝑥2
(𝑢1, 𝑥1) = ||𝐹𝑥1𝑥1 + 𝐹𝑢1𝑢1||2𝑄𝑥𝑥𝑇

𝜓*
𝑥2
(𝑢1, 𝑥1) = 𝐺𝑥2

𝐹𝑢1
𝑢1 +𝐺𝑥2

𝐹𝑥1
𝑥1 − 𝑔𝑙2 = 0

𝑊𝑥2
𝑥2 𝑢1 𝑥1⎡⎣ 𝐼∞

∞

⎤⎦⎡⎣𝑄 1
2
𝑥𝑥𝑇 0
𝐺𝑥2

𝑔𝑙2
𝐼 −𝐹𝑢1

−𝐹𝑥1
0

⎤⎦→
𝑊 ′

𝑥2
𝑥2 𝑢1 𝑥1⎡⎣∞𝐼

∞

⎤⎦⎡⎣𝐼 −𝐹𝑢1
−𝐹𝑥1

0

0 𝑄
1
2
𝑥𝑥𝑇𝐹𝑢1

𝑄
1
2
𝑥𝑥𝑇𝐹𝑥1

0
0 𝐺𝑥2

𝐹𝑢1
𝐺𝑥2

𝐹𝑥1
𝑔𝑙2

⎤⎦
(a) Eliminate 𝑥2

𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

→
𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

𝑢*1(𝑥1) = argmin
𝑢1

𝜑*𝑥2
(𝑥1, 𝑢1) + 𝑢𝑇1 𝑅𝑢1

s.t. 𝐺𝑥2
𝐹𝑢1

𝑢1 −𝐺𝑥2
𝐹𝑥1

𝑥1 − 𝑔𝑙2 = 0

𝐺𝑢1
𝑢1 −𝐺𝑥1

𝑥1 − 𝑔𝑙1 = 0

→
𝑢*1(𝑥1) = −𝐾1𝑥1 + 𝑘1

𝜑*𝑢1
(𝑥1) = ||𝑃

1
2
1 𝑥1 − 𝑝1||2

𝜓*
𝑢1
(𝑥1) = 𝐻1𝑥1 − ℎ1 = 0

𝑊𝑢1
𝑢1 𝑥1⎡⎢⎢⎣

𝐼
∞
𝐼
∞

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
𝑄

1
2
𝑥𝑥𝑇𝐹𝑢1

𝑄
1
2
𝑥𝑥𝑇𝐹𝑥1

0
𝐺𝑥2

𝐹𝑢1
𝐺𝑥2

𝐹𝑥1
𝑔𝑙2

𝑄
1
2
𝑢𝑢1 0
𝐺𝑢1 𝐺𝑥1 𝑔𝑙1

⎤⎥⎥⎥⎦ →

𝑊 ′
𝑢1

𝑢1 𝑥1⎡⎣𝑅1

∞
𝐼

⎤⎦⎡⎣𝐼 𝐾1 𝑘1
0 𝐻1 ℎ1

0 𝑃
1
2
1 𝑝1

⎤⎦
(b) Eliminate 𝑢1

Figure 7-4: Two elimination steps for EC-LQR with local constraints. This figure has the same
layout as Figure 7-3.

179

cost_to_go – all of which being functions of 𝑥𝑖. When the problem is linear and all

matrices are invertible or full column rank, the optimal solution is unique. We will

demonstrate our method finding the unique optimal solution in Section 7.5.

7.4.3 Computational Complexity Analysis

Because Step 1 collects only the factors connected to the variable we seek to eliminate,

VE is very efficient and the complexity of eliminating a single variable is independent

of the trajectory length. When eliminating one variable, we factorize a matrix, 𝐴𝑖,

whose rows consist of all the factors connected to the variable and whose columns

correspond to the variable and its separator. Thus, the maximum dimension of 𝐴𝑖

in EC-LQR problem with just local constraints is 3𝑛 × (2𝑛 +𝑚) when eliminating

a state or (2𝑛 + 𝑚) × (𝑛 + 𝑚) when eliminating a control. In the worst case, the

QR factorization on this matrix has complexity 𝑂(2(3𝑛)(2𝑛 + 𝑚)2) = 𝑂(24𝑛3 +

24𝑛2𝑚 + 6𝑛𝑚2) when eliminating a state or 𝑂(2(2𝑛 + 𝑚)2(𝑛 + 𝑚)) = 𝑂(8𝑛3 +

16𝑛2𝑚+10𝑛𝑚2 +2𝑚3) when eliminating a control. To obtain the solution from the

sparse QR factorization result of 𝐴, we apply back substitution whose computation

complexity is 𝑂(𝑛2 + 𝑚2), so the overall computation complexity of solving the

trajectory with length 𝑇 is 𝑂(𝑇 · (𝜅1𝑛3+𝜅2𝑛
2𝑚+𝜅3𝑛𝑚

2+𝜅4𝑚
3)), which is the same

as the state of the art DP approach [81].

7.4.4 EC-LQR with Cross-time-step Constraints

The factor graph’s ability to add factors on any set of variables allows us to add

more general auxiliary constraints and objectives than [81], such as cross-time-step

constraints. Note that cross-time-step objectives could also be handled the same way

if desired. The VE algorithm for solving EC-LQR with cross-time-step constraints

180

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

𝑢0 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6

(a) Factor graph

𝑥1𝑥0

𝑢0

𝑥2

𝑢1

𝑥3

𝑢2

𝑥4

𝑢3

𝑥5

𝑢4

𝑥6

𝑢5

𝑥7

𝑢6

(b) The Bayes Net after Variable Elimination

Figure 7-5: Example cross-time-step constraint in a factor graph. The bottom figure is a Bayes
net showing variable dependencies after VE.

181

(or even objectives) remains exactly the same as in Section 7.4.2. For example, in

Fig. 7-5, the cross-time-step constraint is 𝑆𝑥𝑛𝑐+𝑝 + 𝑆𝑥𝑛𝑐 + 𝑠 = 0. When eliminating

𝑥𝑛𝑐+𝑝, its separator will contain 𝑥𝑛𝑐+𝑝−1, 𝑢𝑛𝑐+𝑝−1 and 𝑥𝑛𝑐 . After elimination of 𝑥𝑛𝑐+𝑝,

the new constraint_to_go factor will be connected to not only 𝑥𝑛𝑐+𝑝−1 and 𝑢𝑛𝑐+𝑝−1,

but also 𝑥𝑛𝑐 . Subsequent elimination steps will generate similar factors. As a result,

after all variables are eliminated, the final feedback controllers for control inputs

between 𝑥𝑛𝑐+𝑝 and 𝑥𝑛𝑐 are functions of two states instead of just the current state.

Fig. 7-5b illustrates the result in the form of a Bayes Net [36] where arrows represent

the variable dependencies.

We further show our method maintains linear complexity with the length of the

trajectory. Notice in Fig. 7-5b that each cross-time-step constraint spanning from

time step 𝑡𝑎 to 𝑡𝑏 adds additional dependencies of variables 𝑥𝑘, 𝑢𝑘 (𝑡𝑎 < 𝑘 ≤ 𝑡𝑏)

on variables associated with the cross-time-step constraint. Therefore, as long as

the maximum number of variables associated with a cross-time-step constraint is

bounded by 𝑑, and the maximum number of cross-time-step constraints spanning over

any time step is bounded by 𝑞, the number of variables involved in any elimination

step (which contribute to the 𝜅 constants) is bounded by 3 + (𝑑 − 1) × 𝑞 thereby

bounding the complexity of each elimination operation.

7.5 Experiments

We run simulation experiments to demonstrate the capability of the proposed method2.

We implement our method using the Georgia Tech Smoothing And Mapping (GT-

SAM) toolbox [35]. We compare our approach with three baseline methods. Baseline

method 1 is [133], Baseline method 2 is [81], and Baseline method 3 is using Mat-
2Source code is available on Github

182

https://github.com/paulyang1990/equality-constraint-LQR-compare

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Baseline Method 1

final cost = 11.01

constraint violation = 1.88e-06

x(1)

x(2)

x(3)

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Baseline Method 2

final cost = 11.01

constraint violation = 1.88e-06

x(1)

x(2)

x(3)

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Proposed Method

final cost = 11.01

constraint violation = 1.88e-06

x(1)

x(2)

x(3)

Figure 7-6: Optimal trajectory, cost, and constraint violation comparison of three methods for
Problem 7.3. For each method we plot the three dimensions of the state 𝑥. All methods produce
the same result.

lab’s quadprog quadratic programming solver (which does not produce an optimal

control policy). We first present comparison experiments for EC-LQR on random

systems. We then show our approach handling cross-time-step constraints on an

example system motivated by a single leg hopping robot.

7.5.1 Cost, Constraint Violation & Controller Comparison

The first experiment is to find the optimal trajectory for a simple system with 𝑥𝑖 ∈ R3

and 𝑢𝑖 ∈ R3 that is subject to state constraints. The EC-LQR problem is given by:

min
u

(𝑥𝑇−𝑥𝑁)𝑇𝑄𝑥𝑥𝑇
(𝑥𝑇 − 𝑥𝑁) +

𝑇−1∑︁
𝑡=0

(𝑥𝑇𝑡 𝑄𝑥𝑥𝑡𝑥𝑡 + 𝑢𝑇𝑡 𝑄𝑢𝑢𝑡𝑢𝑡)

s.t. 𝑥𝑡+1 = 𝐹𝑥𝑥𝑡 + 𝐹𝑢𝑢𝑡, 𝑥0 = [0 0 0]𝑇 ,

𝑥𝑁 = [3 2 1]𝑇 , 𝑥𝑇/2 = [1 2 3]𝑇 (7.3a)

where 𝑑𝑡 = 0.01, 𝐹𝑥 = 𝐼3×3 + 𝐼3×3 · 𝑑𝑡, 𝐹𝑢 = 𝐼3×3 · 𝑑𝑡, 𝑇 = 100, 𝑄𝑥𝑥𝑡 = 0.01 · 𝐼3×3,

𝑄𝑢𝑢𝑡 = 0.001 · 𝐼3×3, and 𝑄𝑥𝑥𝑇
= 500 · 𝐼3×3. In this case 𝒞 = {0, 𝑇/2}.

183

0 20 40 60 80 100

Trajectory Steps

-400

-300

-200

-100

0

E
le

m
e
n
t
V

a
lu

e
Baseline Method 2

Elements in optimal controller K and k

0 20 40 60 80 100

Trajectory Steps

-400

-300

-200

-100

0

E
le

m
e
n
t
V

a
lu

e

Proposed method
Elements in optimal controller K and k

Figure 7-7: The plots of feedback control gain matrices from Baseline Method 2 and ours (we
omit Baseline 1 because its result is identical to Baseline 2). Each curve represents one element in
𝐾𝑡 or 𝑘𝑡.

Fig. 7-6 compares the optimal state trajectories using three methods. Baseline

3 is omitted for space reasons, but all three baselines and our method arrive at the

exact same solution, with 0 constraint violation and identical total cost, as expected

since the optimal solution is unique.

To show our method can also handle state and control local constraints, we replace

the last state-only constraint (7.3a) to be a constraint that contains both the state

and the control as 𝑥𝑁/2 + 𝑢𝑁/2 + [1 2 3]𝑇 = 0. We solve this problem to get the

optimal controllers 𝑢𝑡 = −𝐾𝑡𝑥𝑡 + 𝑘𝑡. 𝐾𝑡 and 𝑘𝑡 are identical among Baseline 1,

Baseline 2 and ours. Fig. 7-7 omits Baseline 1 for space reasons. Baseline 3 does

not produce a controller.

7.5.2 Run Time Comparison

We focus on comparing our method and Baseline 2 since Baseline 2 is the only

baseline that has linear complexity and generates a feedback policy. Both methods

are implemented in C++ and tested on a computer with an Intel i7-8809G 3.10GHz

184

CPU. We generate random problems with given sizes and compare average run times

over 10 trials. With 𝑙𝑡 = 𝑚− 1 dimensional local constraints at every time step, we

first fix 𝑛 = 𝑚 = 3 and vary trajectory length 𝑇 :

𝑇 100 200 300 400 500 600

[81] (ms) 0.88 1.06 1.67 2.01 2.35 2.81

Ours (ms) 2.32 3.17 4.30 4.68 5.86 6.86
then we fix 𝑇 = 100 and increase 𝑛 and 𝑚 together:

𝑛,𝑚 10 20 30 40 50 60

[81] (ms) 3.74 14.5 44.1 83.5 152.3 247.7

Ours (ms) 3.81 11.8 27.1 51.2 99.0 170.2
The experiments show that for both methods, run time grows linearly with in-

creasing trajectory length as expected. Our method performs better for larger state

and control dimensions. We believe this behavior is attributable to QR factorization

being faster than SVD (used in Baseline 2), which overcomes the graph overhead for

large 𝑚.

7.5.3 Cross-time-step Constraints

To illustrate an example of how cross-time-step constraints can be used to generate

useful trajectories, we use a double integrator system (𝑥𝑖 = [position; velocity], 𝑢 =

acceleration) with periodic “step placements”. Consider the x-coordinate of a hopping

robot’s foot which initially starts in contact with the ground and makes contact with

the ground again every 20 time steps. Each contact, it must advance forward by

0.6 units and match the ground velocity (which may be non-zero e.g. on a moving

185

walkway). The problem is given by:

min
u

𝑥𝑇𝑇𝑄𝑥𝑥𝑇
𝑥𝑇 +

𝑇−1∑︁
𝑡=0

(𝑥𝑇𝑡 𝑄𝑥𝑥𝑡𝑥𝑛 + 𝑢𝑇𝑡 𝑄𝑢𝑢𝑡𝑢𝑡) (7.4a)

s.t. 𝑥𝑡+1 =

⎡⎣1 𝑑𝑡

0 1

⎤⎦𝑥𝑡 +
⎡⎣ 0

𝑑𝑡

⎤⎦𝑢𝑡, 𝑥0 = [0 0]𝑇 , (7.4b)

𝑥𝑛𝑐+20 − 𝑥𝑛𝑐 =
[︁
0.6 0

]︁𝑇
, 𝑛𝑐= 0, 20, 40, 60, 80 (7.4c)

The cross-time-step constraints (7.4c) enforce that contacts must occur at a fixed

position relative to and with the same velocities as the previous contacts 𝑝 = 20 time

steps prior. These create constraint factors between two state variables 𝑝 = 20 time

steps apart, as in Fig. 7-5 (𝑝 = 3 in Fig. 7-5).

Fig. 7-8 shows the solutions to Problem 7.4 using Baseline 2 [81], Baseline 3

(QP), and our method, as well as the results when using the same controllers with

a perturbed initial state 𝑥0 = [0 1.8]𝑇 (i.e. walking on a moving walkway with

velocity 1.8). We omit Baseline 1 from the Figure for space reasons since it performs

identically to Baseline 2. We apply some modifications to allow for comparison since

Baselines 1 and 2 cannot natively handle cross-time-step constraints and Baseline 3

cannot generate an optimal policy, but even so, the adjusted baselines do not generate

optimal trajectories from perturbed initial state, as shown in Fig. 7-8 (bottom). For

Baseline 2, we convert the cross-time-step constraints to same-time-step constraints

𝑥𝑛𝑐 = [0.03𝑛𝑐 0]
𝑇 for 𝑛𝑐 = 0, 20, . . . resulting in incorrect constraints after perturbing

the initial state. An alternative would be to introduce 10 additional state dimensions

(two for each cross-time-step constraint) analagous to Lagrange multipliers, but we

argue that such an approach is not sustainable for online operation and many cross-

time-step constraints. For Baseline 3, we re-use the control sequence from Problem

186

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
c
it
y

Baseline Method 3

Optimal trajectory

cost: 284.45 - constr: 1.84e-29

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
c
it
y

Baseline Method 2

Optimal trajectory

cost: 284.45 - constr: 6.16e-32

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
c
it
y

Proposed Method

Optimal trajectory

cost: 284.45 - constr: 1.05e-26

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
c
it
y

w/ Perturbed initial state

cost: 303.08 - constr: 3.89e+00

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
c
it
y

w/ Perturbed initial state

cost: 257.16 - constr: 6.48e+00

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
c
it
y

w/ Perturbed initial state

cost: 55.55 - constr: 9.24e-31

Figure 7-8: The state trajectories solving Problem 7.4 using Baseline method 2 (left), Baseline
method 3 (middle), and our proposed method (right) with control sequence/policies applied to the
original problem (top) and after perturbing the initial state (bottom). All methods generate the
same trajectory to the initial problem, but only ours gives a policy which generates the optimal
trajectory for the perturbed problem. “Cost” and “Constr” denote the total objective cost and
constraint violation, respectively.

7.4 for the perturbed case. Our method’s control law produces a state trajectory

that is optimal and without constraint violation even with a perturbed initial state

an shown in Fig. 7-8 (bottom right).

7.6 Future Work

Just as LQR is a building block for Differential Dynamic Programming (DDP) [88,

98], linear factor graphs could also be a building block for more general nonlinear

optimal control problems. In this direction, the following practical developments

187

should be investigated: incorporating inequality constraints e.g. using barrier or

penalty functions [49]; extending to nonlinear systems using nonlinear factor graphs

[36]; addressing over-constrained “constraints” in VE via prioritization of constraints;

leveraging incremental solving using Bayes Trees [69] to do efficient replanning; and

combining estimation and optimal control into the same factor graph to better close

the perception-control loop.

7.7 Conclusions

In this chapter, we proposed solving equality constrained linear quadratic regular

problems using factor graphs. We showed that factor graphs can represent linear

quadratic optimal control problems with auxiliary constraints by capturing the rela-

tionships amongst variables in the form of factors. Variable elimination, an algorithm

that exploits matrix sparsity to optimize factor graphs, is used to efficiently solve

for the optimal trajectory and feedback control policy. We demonstrated that our

approach can handle more general constraints than traditional DP approaches while

also matching or exceeding state-of-the-art performance with traditional constraints.

We believe our method has great potential to be used in a number of complex robotics

systems which require solving more general constrained optimal control problems.

7.8 Appendix

We provide a probabilistic view of Figure 7-2 to show its connection to MPC and

VILO discussed in previous chapters. If we treat 𝑋 = [𝑥2;𝑢1;𝑥1;𝑢0;𝑥0] as a stack of

random variables, before connecting variables with edges it has a prior distribution

188

𝑝(𝑋). We then define three types of likelihood functions [38]:

𝑙𝑜𝑏𝑗𝑥(𝑥𝑡;𝒬𝑡) ∝ 𝑃 (𝒬𝑡|𝑥𝑡) = exp
{︁
− 1

2
‖𝑥𝑡‖2𝑄𝑥𝑥𝑡

}︁
, (7.5)

𝑙𝑜𝑏𝑗𝑢(𝑢𝑡;ℛ𝑡) ∝ 𝑃 (ℛ𝑡|𝑢𝑡) = exp
{︁
− 1

2
‖𝑢𝑡‖2𝑄𝑢𝑢𝑡

}︁
, (7.6)

𝑙𝑑𝑦𝑛(𝑥𝑡+1, 𝑥𝑡, 𝑢𝑡;ℱ𝑡) ∝ 𝑃 (ℱ𝑡|𝑥𝑡+1, 𝑥𝑡, 𝑢𝑡)

= exp
{︁
− 1

2
‖𝑥𝑡+1 − 𝐹𝑥𝑡𝑥𝑡 + 𝐹𝑢𝑡𝑢𝑡‖2Σ𝑐

}︁
, (7.7)

where ‖ · ‖Σ is the Mahalanobis norm, and Σ is the covariance of the distribution.

Notice Σ𝑐 → 0. As the definition suggests, a likelihood function measures the prob-

ability of elements in the random variable 𝑋 on condition that a “factor event” such

as 𝒬 be 0. It’s not hard to see the correspondences between edges in Figure 7-2 and

likelihood functions. Define all factor events as 𝑍 = [ℱ1,ℱ2,𝒬0,𝒬1,𝒬2,ℛ0,ℛ1], the

joint probability distribution of 𝑋 and 𝑍 is essentially

𝑝(𝑋,𝑍) =𝑝(𝑍|𝑋)𝑝(𝑋)

=𝑝(𝑥0, 𝑢0, 𝑥1, 𝑢1, 𝑥2,ℱ1,ℱ2,𝒬0,𝒬1,𝒬2,ℛ0,ℛ1)

=𝑝(𝒬0|𝑥0)𝑝(𝒬1|𝑥1)𝑝(ℱ1|𝑥0, 𝑢0, 𝑥1)𝑝(ℱ2|𝑥1, 𝑢1, 𝑥2)

𝑝(ℛ0|𝑢0)𝑝(ℛ1|𝑢1)𝑝(𝑥0, 𝑢0, 𝑥1, 𝑢1, 𝑥2) (7.8)

The last expansion is done using the Bayes Theorem. Apply the Bayes Theorem

again, and assume the prior distribution of 𝑝(𝑋) is uniform, we can conclude that

the maximum a posteriori (MAP) distribution of 𝑋 follows [36]

𝑋𝑀𝐴𝑃 = argmax
𝑋

𝑝(𝑍|𝑋) = argmax
𝑋

𝑙(𝑋;𝑍) = argmax
𝑋

𝜑(𝑋)

189

where 𝑙(𝑋;𝑍) is the product of likelihood functions obtained by rewriting conditional

probability terms in Eq. (7.8) to their counterparts in (7.5), (7.6), or (7.7). 𝜑(𝑋) is

a simplified notation defined as 𝑙(𝑋;𝑍) = 𝜑(𝑋) =
∏︀
𝜑𝑖(𝑋𝑖). 𝜑𝑖 is still the likelihood

function we defined earlier, and 𝑋𝑖 is a set of elements of 𝑋 that relates to the

function 𝜑𝑖. We call a 𝜑𝑖 as a factor.

The key procedure links the probabilistic view of the factor graph and the LQR

is the VE. When 𝑋 = 𝑋𝑀𝐴𝑃 , 𝜑(𝑋𝑀𝐴𝑃) ∝ 𝑝(𝑋𝑀𝐴𝑃). Let 𝑋 = [𝜃0 . . . 𝜃𝑛], we can

factorize 𝑝(𝑋) as

𝑝(𝑋) = 𝑝(𝜃0|𝑆0)𝑝(𝜃1|𝑆1) . . . 𝑝(𝜃𝑛) =
∏︁
𝑗

𝑝(𝜃𝑗|𝑆𝑗). (7.9)

The 𝑆𝑗 is called separator [12], which is defined as the set of variables that 𝜃𝑗 is

conditioned after the factorization. This factorization process is the VE. Its final

form depends on the elimination order, which is the order how elements in 𝑋 got

picked during VE. More importantly, in the case of 𝑋 contains states and control

inputs, when control 𝑢𝑖 in𝑋 is picked, the factorized term 𝑝(𝑢𝑖|𝑆𝑖) is the optimal

feedback controller.

To better present the detailed steps of VE, we convert the probabilistic view to a

matrix view using the fact that our likelihood functions are Gaussian distributions.

From Definition (7.5), (7.6), and (7.7), we can see all likelihood functions or factors

𝜑𝑖(𝑋𝑖) can be written as

𝜑𝑖(𝑋𝑖) ∝ exp
{︁
− 1

2
‖𝐴𝑖𝑋𝑖 − 𝑏𝑖‖2Σ𝑖

}︁

190

Then

𝑋𝑀𝐴𝑃 = argmax
𝑋

𝜑(𝑋) = argmin
𝑋

−2 log(
∏︁

𝜑𝑖(𝑋𝑖))

= argmin
𝑋

∑︁
𝑖

‖𝐴𝑖𝑋𝑖 − 𝑏𝑖‖2Σ𝑖
= argmin

𝑋
‖𝐴𝑋 − 𝑏‖2Σ (7.10)

where 𝐴, 𝑏 and Σ stack all 𝐴𝑖, 𝑏𝑖, and Σ𝑖 together respectively. Then the solution of

𝑋𝑀𝐴𝑃 is a linear least square problem. A caveat is the covariance matrix in (7.7) is

0 because the system dynamics constraints must be strictly obeyed. So some terms

in Σ are zero. If we expand the Mahalanobis norm in (7.10) and define weight matrix

𝑊 = Σ−1/2, we have (𝐴𝑋−𝑏)𝑇𝑊 (𝐴𝑋−𝑏) with some infinite weights. This weighted

linear least square system can be solved by the modified Gram-Schmidt algorithm

[50].

Using the matrix view, VE has a direct connection to sparse matrix factorization

[36]. If we factorize matrix 𝐴 in (7.10) as 𝐴 = 𝑄𝑅 using the modified Gram-Schmidt,

where 𝑄 is orthonormal and 𝑅 is upper-triangular. Then

min
𝑋
‖𝐴𝑋 − 𝑏‖2Σ = min

𝑋
𝑄𝑇‖𝐴𝑋 − 𝑏‖2Σ = min

𝑋
‖𝑅𝑋 − 𝑑‖2Σ + ‖𝑒‖2Σ

where 𝑑 = 𝑄𝑇 𝑏. The last term ‖𝑒‖2Σ appears as a residual if 𝑅 have rows with all 0s on

the bottom part. Now each block row of ‖𝑅𝑋−𝑑‖2Σ corresponds to one term in (7.9)

because 𝑅 is upper-triangular. We shall emphasize that the factorization of A can

be done by doing the modified Gram-Schmidt on just one column at a time. Since

𝑖th column of 𝐴 corresponds to variable 𝜃𝑖 in 𝑋, we “eliminate” it. Moreover, 𝐴 is

sparse in the optimal control setting, so the elimination can be done very efficiently.

This observation leads to the following VE steps to eliminate 𝜃𝑖:

191

Step 1. Identify all the factors directly connected to 𝜃𝑖 (all block rows in 𝐴 with nonzero

elements on block column 𝑖). We also extract rows’ weights from the weight

matrix 𝑊 . Block rows with infinite weights are constraint factor 𝜓𝑖(𝜃𝑖, 𝑆𝑖),

while block rows with finite weight are objective factor 𝜑𝑖(𝜃𝑖, 𝑆𝑖). Now all these

block rows formulate ‖𝐴𝑖[𝜃𝑖;𝑆𝑖] − 𝑏𝑖‖2Σ𝑖
We can normalize finite weights to be

1 by multiplying Σ
−1/2
𝑖 on 𝐴𝑖 and 𝑏𝑖.

Step 2. Factorize [𝐴𝑖|𝑏𝑖] to [𝑅𝑖|𝑑𝑖] using the modified Gram-Schmidt on its first column.

In the case of quadratic costs and linear system dynamics constraints, we can

treat it as a constrained least square problem and solve manually, as we show

in Figure 7-3.

Step 3. Output the first block row of [𝑅𝑖|𝑑𝑖] as 𝑝(𝜃𝑖|𝑆𝑖). Add the rest blocks of [𝑅𝑖|𝑑𝑖]

to replace corresponding blocks in [𝐴𝑖|𝑏𝑖].

We repeat this process until all variables have been eliminated. More details on the

VE algorithm are in [36].

192

Chapter 8

Conclusion & Future Work

Here is the revised version of your paragraph with improved grammar and concise-

ness, while retaining the original meaning and incorporating LaTeX tags:

In this thesis, we systematically explored model predictive control, the Kalman

filter, sliding window estimation, and their interconnections, with applications to

legged locomotion. The reaction wheel MPC enabled a novel legged robot platform

to demonstrate superior stability and new locomotion behaviors. Online kinematic

calibration studies examined how locomotion-related error sources can affect Kalman

filter-based odometry accuracy and how to mitigate them. The Kalman filter is

closely connected to sliding window state estimation because they fundamentally

share the same numerical optimization problem structure. Based on sliding window

estimation, we propose a novel visual-inertial-leg odometry algorithm using a factor

graph that can achieve low-drift, long-term state estimation. We then focus on in-

troducing more sensors to the legged robot odometry sensor suite to further improve

estimation accuracy and robustness, particularly by utilizing more compact sensors

such as IMUs on the robot’s feet. We also develop the first multi-IMU visual-inertial

193

odometry algorithm capable of achieving low-drift, long-term state estimation dur-

ing long-distance rough terrain locomotion. Moreover, we experimented with how

control-related parameters could affect estimation system performance, providing

guidance for legged robot controller tuning.

Following these contributions, we solve the equality-constrained LQR problem

using the factor graph, highlighting an important connection between control and

state estimation by demonstrating that the equality-constrained LQR problem can

be solved using the same numerical optimization algorithm as sliding window state

estimation.

Our design philosophy, which emphasizes mimicking human and animal shapes

without constraining ourselves to them, could guide many future robotics system

designs. We use the most compact and effective solutions to address fundamental

limitations and performance issues, even if the solutions do not resemble animal

shapes. The usage of reaction wheels and additional IMUs are good examples of this

philosophy.

The methods proposed in this thesis all come with not only mathematical for-

mulations but also open-source C++ or Matlab implementations, hosted on Github

with permanent addresses. Considerable software engineering work is done to make

sure they can be used easily by the research community. The Cerberus and Cerberus

2.0 also has Docker and ROS interfaces that allow them to be integrated into actual

robot hardware directly.

Finally, we would like to discuss some future work directions that can be built

upon the work in this thesis.

194

8.1 Legged Control

As we discussed in Chapter 1.1, MPC and RL have become the two dominant meth-

ods in legged robot control. In both cases, the controller hierarchy includes an

MPC/RL-based local planner that translates high-level user commands into robot

task space commands, followed by a low-level controller that converts task space

commands into joint space commands. The success of this hierarchy on quadruped

robots is partly due to the simple structure of the robot dynamics and the excep-

tional torque control performance of direct drive motors [157]. If the robot motor

dynamics are complicated, transferring an MPC/RL algorithm from simulation to

hardware is much more difficult [62]. For legged robots and humanoid robots with

even more complex dynamics, it is not yet clear if such a hierarchy will work very

well. It is likely that tuning the low-level controller will require many classical con-

trol theory techniques to counter disturbances from the external environment and

the robot structure. Additionally, since the low-level control must run at 500Hz-

2000Hz, the frequency requirement makes it challenging for the low-level controller

to be replaced by function approximators, which typically struggle to achieve such

fast inference frequencies.

8.2 Legged Estimation

The estimation techniques discussed in this thesis provide a comprehensive introduc-

tion to model-based methods. Several sensor suite formulations are studied, which

can be readily applied to all types of legged robots. As we pointed out, improving

algorithms is usually not as effective as adding more sensors to the system. Since

multi-IMU PO performs much better than single IMU PO, a very interesting ques-

195

tion naturally arises: what if we add one IMU per rigid link on the robot? From

an engineering perspective, this is not hard to achieve. On complicated legged sys-

tems such as full-size humanoid robots, this could result in 30 or more IMUs being

used. According to estimation theory, the estimation accuracy will improve until the

estimation covariance equals the sensor-level signal covariance divided by the num-

ber of sensors. However, approaching this limit while maintaining a low estimation

computation cost may be difficult. Nonetheless, it is worth exploring, and a general

multi-link-multi-sensor estimation framework may be developed.

8.3 Legged System Hardware Development

In recent years, as researchers continue to expand the capabilities of legged robots,

our attention has inevitably been drawn to humanoid robots. Although we do not

constrain ourselves to human and animal shapes, increasing evidences suggest that

moving towards a human shape could benefit robot performance. While the reaction

wheel is a compact solution that can improve a legged robot’s controllability, it

is still not very cost-effective: the wheel apparatus can only improve stability and

nothing else. A better solution could be adding arms [8], which have already been

shown to help humanoid robots balance quite well, or let the robot stands up [28].

Alternatively, researchers have also explored flat feet designs [151] for legged robots

to mitigate the controllability issues caused by point feet. Interestingly, this makes

four legs seem redundant, and humanoid robots may prove to be more cost-effective.

Nevertheless, the study of legged robots is a stepping stone toward developing more

powerful humanoids.

196

8.4 Legged System Software Development

Here is the revised version of your paragraph with improved grammar and concise-

ness, while retaining the original meaning and incorporating LaTeX tags:

From a system perspective, we believe there are two areas that need more atten-

tion when developing a complete legged system.

The first is developing solvers and problem construction infrastructure that sim-

plify constructing both control and estimation problems. In a practical legged robot

system, the MPC runs in one process using OSQP [138] to solve the control problem,

while its estimator runs in another process using a Gauss-Newton gradient descent

solver. Each process includes functions that can be reused to speed up computation,

such as forward kinematics, Jacobians, and contact signal generation. If both pro-

cesses can use the same solver and a shared set of kinematic functions that cache

computation results, they will be more efficient.

The second is considering control parameter and estimation parameter selections

together in a more systematic way. In Chapter 6 we experimentally showed that cer-

tain control parameters affect estimation accuracy. A further step could be explicitly

modeling these parameters in both estimation and control problems to understand

how their variations affect the characteristics of both problems.

8.5 Data Driven Methods

Cerberus 2.0 considers most error sources in legged locomotion that can be captured

by explicit models; however, there are still unmodeled dynamics that are difficult

to capture with hand-designed models. Therefore, data-driven methods should be

pursued to further improve performance. For example, on the control side, data-

197

driven methods can be used to learn the model of the robot dynamics, the cost

function of the MPC, and a terrain representation that can be converted to MPC

constraints. On the estimation side, all sensor measurement models can be learned

from data if the ground truth state is available.

Although I believe that data-driven methods will be the future of legged locomo-

tion control and estimation, numerical optimization-based methods should still play

an important role in many cases. Even with learned robot dynamics or sensor mod-

els, control or estimation problem structures are usually well captured by explicit

numerical optimization programs. This representation is powerful enough to adapt

to changes in robot dynamics, the number and types of sensors, and task details,

making it easy to develop controllers and estimators for various robotic systems and

tasks. Additionally, numerical optimization allows users to analyze the solution’s

sensitivity to problem parameters by examining the gradient or Hessian matrices at

the solution. This enables the formulation of problems with increased robustness

through proper reformulation.

Therefore, an ideal combination would be, for example, in the estimation case,

to still use the factor graph as the backbone of the estimator. Instead of manually

coding the factor functions and their Jacobians, we can use learning-based function

approximators to represent them. This approach allows the overall problem to be

understood through numerical optimization, while the function approximators com-

pensate for model mismatches.

In conclusion, as legged robot research reaches a mature stage where multiple

real-world applications are possible, various algorithmic and hardware innovations

can further improve legged robot robustness. We have discussed established standard

198

approaches for legged control and estimation, and then demonstrated how adding

seemingly incremental changes to the system can result in significant improvements

in robot performance. We believe this methodology applies not only to legged robots

but also to all similar robotic systems that need to leverage multiple sensors and

interact with the external environment. This thesis serves as a stepping stone toward

a future where humans and robots live harmoniously.

199

Bibliography

[1] DE Adams. Introduction to inertial navigation. The Journal of Navigation,
9(3):249–259, 1956.

[2] Joao S Albuquerque and Lorenz T Biegler. Decomposition algorithms for on-
line estimation with nonlinear models. Computers & chemical engineering,
19(10):1031–1039, 1995.

[3] Simon L Altmann. Rotations, quaternions, and double groups. Courier Corpo-
ration, 2005.

[4] Karl J Astrom. Introduction to stochastic control theory. Elsevier, 1971.

[5] Jared B Bancroft and Gérard Lachapelle. Data fusion algorithms for multiple
inertial measurement units. Sensors, 11(7):6771–6798, 2011.

[6] Alex Barclay, Philip E Gill, and J Ben Rosen. SQP methods and their appli-
cation to numerical optimal control. In Variational calculus, optimal control
and applications, pages 207–222. Springer, 1998.

[7] Timothy D Barfoot. State estimation for robotics. Cambridge University Press,
2017.

[8] C Dario Bellicoso, Koen Krämer, Markus Stäuble, Dhionis Sako, Fabian Jenel-
ten, Marko Bjelonic, and Marco Hutter. Alma-articulated locomotion and
manipulation for a torque-controllable robot. In 2019 International conference
on robotics and automation (ICRA), pages 8477–8483. IEEE, 2019.

[9] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1.
Athena scientific Belmont, MA, 1995.

[10] John T Betts. Practical methods for optimal control and estimation using
nonlinear programming. SIAM, 2010.

200

[11] Marko Bjelonic, Ruben Grandia, Oliver Harley, Cla Galliard, Samuel Zimmer-
mann, and Marco Hutter. Whole-body mpc and online gait sequence gener-
ation for wheeled-legged robots. In 2021 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 8388–8395. IEEE, 2021.

[12] Jean RS Blair and Barry Peyton. An introduction to chordal graphs and clique
trees. In Graph theory and sparse matrix computation, pages 1–29. Springer,
1993.

[13] Gerardo Bledt and Sangbae Kim. Implementing regularized predictive control
for simultaneous real-time footstep and ground reaction force optimization. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6316–6323, 2019.

[14] Gerardo Bledt, Matthew J Powell, Benjamin Katz, Jared Di Carlo, Patrick M
Wensing, and Sangbae Kim. Mit cheetah 3: Design and control of a robust,
dynamic quadruped robot. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2245–2252. IEEE, 2018.

[15] Fabian Blöchliger, Michael Blösch, Péter Fankhauser, Marco Hutter, and
Roland Siegwart. Foot-eye calibration of legged robot kinematics. In Advances
in Cooperative Robotics, pages 420–427. World Scientific, 2017.

[16] Michael Bloesch. State estimation for legged robots-kinematics, inertial sensing,
and computer vision. PhD thesis, ETH Zurich, 2017.

[17] Michael Bloesch, Christian Gehring, Péter Fankhauser, Marco Hutter, Mark A
Hoepflinger, and Roland Siegwart. State estimation for legged robots on un-
stable and slippery terrain. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 6058–6064. IEEE, 2013.

[18] Michael Bloesch, Marco Hutter, Christian Gehring, Mark A Hoepflinger, and
Roland Siegwart. Kinematic batch calibration for legged robots. In 2013 IEEE
International Conference on Robotics and Automation, pages 2542–2547. IEEE,
2013.

[19] Michael Bloesch, Marco Hutter, Mark A Hoepflinger, Stefan Leutenegger,
Christian Gehring, C David Remy, and Roland Siegwart. State estimation for
legged robots - consistent fusion of leg kinematics and imu. Robotics, 17:17–24,
2013.

201

[20] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimiza-
tion. Cambridge university press, 2004.

[21] Travis Brown and James Schmiedeler. Energetic effects of reaction wheel ac-
tuation on underactuated biped robot walking. pages 2576–2581, 05 2014.

[22] Travis L. Brown and James P. Schmiedeler. Reaction wheel actuation for
improving planar biped walking efficiency. IEEE Transactions on Robotics,
32(5):1290–1297, 2016.

[23] Marco Camurri, Maurice Fallon, Stéphane Bazeille, Andreea Radulescu, Victor
Barasuol, Darwin G Caldwell, and Claudio Semini. Probabilistic contact esti-
mation and impact detection for state estimation of quadruped robots. IEEE
Robotics and Automation Letters, 2(2):1023–1030, 2017.

[24] Marco Camurri, Milad Ramezani, Simona Nobili, and Maurice Fallon. Pronto:
A multi-sensor state estimator for legged robots in real-world scenarios. Fron-
tiers in Robotics and AI, 7:68, 2020.

[25] Paul Chauchat, Axel Barrau, and Silvere Bonnabel. Factor graph-based
smoothing without matrix inversion for highly precise localization. IEEE
Transactions on Control Systems Technology, 29(3):1219–1232, 2020.

[26] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press,
1999.

[27] Gerry Chen and Yetong Zhang. LQR control using factor graphs. https:
//gtsam.org/2019/11/07/lqr-control.html. Accessed: 2020-09-13.

[28] Xuxin Cheng, Ashish Kumar, and Deepak Pathak. Legs as manipulator: Push-
ing quadrupedal agility beyond locomotion. In 2023 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 5106–5112. IEEE, 2023.

[29] Matthew Chignoli and Patrick M. Wensing. Variational-based optimal control
of underactuated balancing for dynamic quadrupeds. IEEE Access, 8:49785–
49797, 2020.

[30] Simon Le Cleac’h, Taylor Howell, Mac Schwager, and Zachary Manchester.
Fast contact-implicit model-predictive control, 2021.

[31] David R Cox. The regression analysis of binary sequences. Journal of the Royal
Statistical Society: Series B (Methodological), 20(2):215–232, 1958.

202

https://gtsam.org/2019/11/07/lqr-control.html
https://gtsam.org/2019/11/07/lqr-control.html

[32] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret.
Robots that can adapt like animals. Nature, 521(7553):503–507, 2015.

[33] Alexander Cunningham, Manohar Paluri, and Frank Dellaert. Ddf-sam: Fully
distributed slam using constrained factor graphs. In 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 3025–3030. IEEE,
2010.

[34] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body motion plan-
ning with centroidal dynamics and full kinematics. In 2014 IEEE-RAS Inter-
national Conference on Humanoid Robots, pages 295–302. IEEE, 2014.

[35] Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction. Tech-
nical report, Georgia Institute of Technology, 2012.

[36] Frank Dellaert, Michael Kaess, et al. Factor graphs for robot perception. Foun-
dations and Trends® in Robotics, 6(1-2):1–139, 2017.

[37] Jared Di Carlo, Patrick M. Wensing, Benjamin Katz, Gerardo Bledt, and Sang-
bae Kim. Dynamic locomotion in the MIT cheetah 3 through convex model-
predictive control. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1–9. IEEE.

[38] Jing Dong, Mustafa Mukadam, Frank Dellaert, and Byron Boots. Motion
planning as probabilistic inference using gaussian processes and factor graphs.
In Robotics: Science and Systems, volume 12, page 4, 2016.

[39] Boston Dynamics. Spot. https://www.bostondynamics.com/spot, 2021. [On-
line; accessed 10-Sep-2021].

[40] Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. Mimc-vins: A versatile
and resilient multi-imu multi-camera visual-inertial navigation system. IEEE
Transactions on Robotics, 37(5):1360–1380, 2021.

[41] Fabio Elnecave Xavier, Guillaume Burger, Marine Petriaux, Jean-Emmanuel
Deschaud, and Francois Goulette. Multi-IMU Proprioceptive State Estimator
for Humanoid Robots. In 2023 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2023), Detroit, United States, October 2023.
IEEE.

203

https://www.bostondynamics.com/spot

[42] Farbod Farshidian et al. OCS2: An open source library for optimal
control of switched systems. [Online]. Available: https://github.com/
leggedrobotics/ocs2.

[43] Farbod Farshidian, Edo Jelavic, Asutosh Satapathy, Markus Giftthaler, and
Jonas Buchli. Real-time motion planning of legged robots: A model predic-
tive control approach. In 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), pages 577–584. IEEE, 2017.

[44] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. Imu
preintegration on manifold for efficient visual-inertial maximum-a-posteriori
estimation. Georgia Institute of Technology, 2015.

[45] Mason A. Peck Frederick A. Leve, Brian J. Hamilton. Spacecraft Momentum
Control Systems. Springer, 2015.

[46] Mohanarajah Gajamohan, Michael Merz, Igor Thommen, and Raffaello
D’Andrea. The cubli: A cube that can jump up and balance. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3722–3727. IEEE.

[47] Fabian Girrbach, Manon Kok, Raymond Zandbergen, Tijmen Hageman, and
Moritz Diehl. Adaptive compensation of measurement delays in multi-sensor
fusion for inertial motion tracking using moving horizon estimation. In 2020
IEEE 23rd International Conference on Information Fusion (FUSION), pages
1–7. IEEE, 2020.

[48] Carlos Gonzalez, Victor Barasuol, Marco Frigerio, Roy Featherstone, Dar-
win G. Caldwell, and Claudio Semini. Line walking and balancing for legged
robots with point feet. In 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 3649–3656, 2020.

[49] Ruben Grandia, Farbod Farshidian, René Ranftl, and Marco Hutter. Feedback
mpc for torque-controlled legged robots. arXiv preprint arXiv:1905.06144,
2019.

[50] Mårten Gulliksson. On the modified Gram-Schmidt algorithm for weighted
and constrained linear least squares problems. BIT Numerical Mathematics,
35(4):453–468, 1995.

[51] Brian Hall. Lie groups, Lie algebras, and representations: an elementary in-
troduction, volume 222. Springer, 2015.

204

https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/ocs2

[52] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2003.

[53] Ross Hartley, Maani Ghaffari, Ryan M Eustice, and Jessy W Grizzle. Contact-
aided invariant extended kalman filtering for robot state estimation. The In-
ternational Journal of Robotics Research, 39(4):402–430, 2020.

[54] Ross Hartley, Maani Ghaffari Jadidi, Lu Gan, Jiunn-Kai Huang, Jessy W
Grizzle, and Ryan M Eustice. Hybrid contact preintegration for visual-inertial-
contact state estimation using factor graphs. In International Conference on
Intelligent Robots and Systems, pages 3783–3790, 2018.

[55] Ross Hartley, Maani Ghaffari Jadidi, Jessy W Grizzle, and Ryan M Eustice.
Contact-aided invariant extended kalman filtering for legged robot state esti-
mation. arXiv preprint arXiv:1805.10410, 2018.

[56] Ross Hartley, Josh Mangelson, Lu Gan, Maani Ghaffari Jadidi, Jeffrey M Walls,
Ryan M Eustice, and Jessy W Grizzle. Legged robot state-estimation through
combined forward kinematic and preintegrated contact factors. In International
Conference on Robotics and Automation, pages 1–8. IEEE, 2018.

[57] Guoquan P Huang, Anastasios I Mourikis, and Stergios I Roumeliotis.
Observability-based rules for designing consistent ekf slam estimators. The
International Journal of Robotics Research, 29(5):502–528, 2010.

[58] Jeffrey Humpherys, Preston Redd, and Jeremy West. A fresh look at the
kalman filter. SIAM review, 54(4):801–823, 2012.

[59] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario
Bellicoso, Vassilios Tsounis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser,
Michael Bloesch, et al. Anymal-a highly mobile and dynamic quadrupedal
robot. In International Conference on Intelligent Robots and Systems, pages
38–44. IEEE, 2016.

[60] Marco Hutter, Hannes Sommer, Christian Gehring, Mark Hoepflinger, Michael
Bloesch, and Roland Siegwart. Quadrupedal locomotion using hierarchical
operational space control. The International Journal of Robotics Research,
33(8):1047–1062, 2014.

[61] Jemin Hwangbo, Carmine Dario Bellicoso, Péter Fankhauser, and Marco Hut-
ter. Probabilistic foot contact estimation by fusing information from dynamics

205

and differential/forward kinematics. In 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 3872–3878. IEEE,
2016.

[62] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor
skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

[63] Vadim Indelman, Stephen Williams, Michael Kaess, and Frank Dellaert. Factor
graph based incremental smoothing in inertial navigation systems. In 2012
15th International Conference on Information Fusion, pages 2154–2161. IEEE,
2012.

[64] Intel. Intel Realsense D435. https://www.intelrealsense.com/depth-
camera-d435/, 2022. [Online; accessed 10-Sep-2022].

[65] Brian E Jackson, Kevin Tracy, and Zachary Manchester. Planning with atti-
tude. IEEE Robotics and Automation Letters, 6(3):5658–5664, 2021.

[66] Adnane Jadid, Linda Rudolph, Frieder Pankratz, and Gudrun Klinker. Utiliz-
ing multiple calibrated imus for enhanced mixed reality tracking. In 2019 IEEE
International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct), pages 384–386. IEEE, 2019.

[67] J Craig John et al. Introduction to robotics: mechanics and control. Reading:
Addison-Wesley, 1989.

[68] Aaron M. Johnson, Thomas Libby, Evan Chang-Siu, Masayoshi Tomizuka,
Robert J. Full, and D. E. Koditschek. TAIL ASSISTED DYNAMIC SELF
RIGHTING, pages 611–620. WORLD SCIENTIFIC.

[69] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J
Leonard, and Frank Dellaert. iSAM2: Incremental smoothing and mapping us-
ing the Bayes tree. The International Journal of Robotics Research, 31(2):216–
235, 2012.

[70] Shuuji Kajita, Hirohisa Hirukawa, Kensuke Harada, Kazuhito Yokoi, Shuuji
Kajita, Hirohisa Hirukawa, Kensuke Harada, and Kazuhito Yokoi. Biped walk-
ing. Introduction to humanoid robotics, pages 105–158, 2014.

[71] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82(1):35–45, 1960.

206

https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/

[72] Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control as a
graphical model inference problem. 2009.

[73] Jonathan Kelly and Gaurav S Sukhatme. Visual-inertial sensor fusion: Lo-
calization, mapping and sensor-to-sensor self-calibration. The International
Journal of Robotics Research, 30(1):56–79, 2011.

[74] Matthew Kelly. An introduction to trajectory optimization: How to do your
own direct collocation. SIAM Review, 59(4):849–904, 2017.

[75] Joon-Ha Kim, Seungwoo Hong, Gwanghyeon Ji, Seunghun Jeon, Jemin
Hwangbo, Jun-Ho Oh, and Hae-Won Park. Legged robot state estimation with
dynamic contact event information. IEEE Robotics and Automation Letters,
6(4):6733–6740, 2021.

[76] Yeeun Kim, Byeongho Yu, Eungchang Mason Lee, Joon-ha Kim, Hae-won
Park, and Hyun Myung. Step: State estimator for legged robots using a
preintegrated foot velocity factor. IEEE Robotics and Automation Letters,
7(2):4456–4463, 2022.

[77] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3,
pages 2149–2154, Sendai, Japan, 2004. IEEE.

[78] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[79] Hendrik Kolvenbach, Elias Hampp, Patrick Barton, Radek Zenkl, and Marco
Hutter. Towards jumping locomotion for quadruped robots on the moon. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5459–5466, 2019.

[80] Arthur J Krener and Kayo Ide. Measures of unobservability. In Proceedings
of the 48h IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, pages 6401–6406. IEEE, 2009.

[81] Forrest Laine and Claire Tomlin. Efficient computation of feedback control for
equality-constrained LQR. In 2019 International Conference on Robotics and
Automation (ICRA), pages 6748–6754. IEEE, 2019.

207

[82] Thomas Dall Larsen, Nils A Andersen, Ole Ravn, and Niels Kjølstad Poulsen.
Incorporation of time delayed measurements in a discrete-time kalman filter,
1998.

[83] Quentin Leboutet, J Rogelio Guadarrama-Olvera, Florian Bergner, and Gor-
don Cheng. Second-order kinematics for floating-base robots using the redun-
dant acceleration feedback of an artificial sensory skin. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 4687–4694.
IEEE, 2020.

[84] Ern J Lefferts, F Landis Markley, and Malcolm D Shuster. Kalman filtering for
spacecraft attitude estimation. Journal of Guidance, control, and Dynamics,
5(5):417–429, 1982.

[85] Sergey Levine. Reinforcement learning and control as probabilistic inference:
Tutorial and review. arXiv preprint arXiv:1805.00909, 2018.

[86] Mingyang Li and Anastasios I Mourikis. High-precision, consistent ekf-based
visual-inertial odometry. The International Journal of Robotics Research,
32(6):690–711, 2013.

[87] Mingyang Li and Anastasios I Mourikis. Online temporal calibration for
camera–imu systems: Theory and algorithms. The International Journal of
Robotics Research, 33(7):947–964, 2014.

[88] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design
for nonlinear biological movement systems.

[89] Thomas Libby, Aaron M. Johnson, Evan Chang-Siu, Robert J. Full, and
Daniel E. Koditschek. Comparative design, scaling, and control of appendages
for inertial reorientation. 32(6):1380–1398.

[90] Pei-Chun Lin, Haldun Komsuoglu, and Daniel E Koditschek. A leg configu-
ration measurement system for full-body pose estimates in a hexapod robot.
IEEE Transactions on Robotics, 21(3):411–422, 2005.

[91] Kevin M Lynch and Frank C Park. Modern robotics. Cambridge University
Press, 2017.

[92] Jeremy Ma, Max Bajracharya, Sara Susca, Larry Matthies, and Matt
Malchano. Real-time pose estimation of a dynamic quadruped in gps-denied

208

environments for 24-hour operation. The International Journal of Robotics
Research, 35(6):631–653, 2016.

[93] Venkatesh Madyastha, Vishal Ravindra, Srinath Mallikarjunan, and Anup
Goyal. Extended kalman filter vs. error state kalman filter for aircraft at-
titude estimation. In AIAA Guidance, Navigation, and Control Conference,
page 6615, 2011.

[94] Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applica-
tions in statistics and econometrics. JohnWiley&Sons, 2019.

[95] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear comple-
mentary filters on the special orthogonal group. IEEE Transactions on auto-
matic control, 53(5):1203–1218, 2008.

[96] Zachary Manchester, Neel Doshi, Robert J Wood, and Scott Kuindersma.
Contact-implicit trajectory optimization using variational integrators. The In-
ternational Journal of Robotics Research, 38(12-13):1463–1476, 2019.

[97] Peter S Maybeck. Stochastic Models, Estimation, and Control, volume 1. Aca-
demic Press, 1982.

[98] David Q Mayne. Differential dynamic programming–a unified approach to the
optimization of dynamic systems. In Control and Dynamic Systems, volume 10,
pages 179–254. Elsevier, 1973.

[99] Dirk Merkel. Docker: lightweight linux containers for consistent development
and deployment. Linux journal, 2014(239):2, 2014.

[100] Richard Montgomery. Gauge theory of the falling cat. Fields Inst. Commun.,
1, 07 1993.

[101] John B Moore. Discrete-time fixed-lag smoothing algorithms. Automatica,
9(2):163–173, 1973.

[102] Anastasios I Mourikis, Stergios I Roumeliotis, et al. A multi-state constraint
kalman filter for vision-aided inertial navigation. In ICRA, volume 2, page 6,
2007.

[103] Richard M Murray. A Mathematical Introduction to Robotic Manipulation.
CRC Press, 2017.

209

[104] Kenneth R Muske, James B Rawlings, and Jay H Lee. Receding horizon recur-
sive state estimation. In 1993 American Control Conference, pages 900–904.
IEEE, 1993.

[105] Michael Neunert, Markus Stäuble, Markus Giftthaler, Carmine D Bellicoso,
Jan Carius, Christian Gehring, Marco Hutter, and Jonas Buchli. Whole-body
nonlinear model predictive control through contacts for quadrupeds. IEEE
Robotics and Automation Letters, 3(3):1458–1465, 2018.

[106] Wyatt S Newman, Craig E Birkhimer, Robert J Horning, and Ann T Wilkey.
Calibration of a motoman p8 robot based on laser tracking. In Proceedings
2000 IEEE International Conference on Robotics and Automation., volume 4,
pages 3597–3602. IEEE, 2000.

[107] Kevin Nickels, Eric Huber, and Matthew DiCicco. Hand-eye calibratilon using
active vision. In 2007 IEEE Aerospace Conference, pages 1–9, 2007.

[108] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[109] Joseph Norby and Aaron M Johnson. Fast global motion planning for dy-
namic legged robots. In 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 3829–3836. IEEE.

[110] Joseph Norby, Jun Yang Li, Cameron Selby, Amir Patel, and Aaron M. John-
son. Enabling dynamic behaviors with aerodynamic drag in lightweight tails.
37(4):1144–1153. Conference Name: IEEE Transactions on Robotics.

[111] Joseph Norby, Jun Yang Li, Cameron Selby, Amir Patel, and Aaron M Johnson.
Enabling dynamic behaviors with aerodynamic drag in lightweight tails. IEEE
Transactions on Robotics, 37(4):1144–1153, 2021.

[112] OptiTrack. OptiTrack. https://optitrack.com/, 2021. [Online; accessed
10-Sep-2021].

[113] Jongwon Park, Jinyi Lee, Jinwoo Lee, Kyung-Soo Kim, and Soohyun Kim.
Raptor: Fast bipedal running and active tail stabilization. In 2014 11th Inter-
national Conference on Ubiquitous Robots and Ambient Intelligence (URAI),
pages 215–215, 2014.

210

https://optitrack.com/

[114] Amir Patel and M. Braae. Rapid turning at high-speed: Inspirations from
the cheetah’s tail. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5506–5511. ISSN: 2153-0866.

[115] Marko Popovic, Andreas Hofmann, and Hugh Herr. Angular Momentum Reg-
ulation during Human Walking: Biomechanics and Control. volume 3, pages
2405–2411, January 2004.

[116] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal of
Robotics Research, 33(1):69–81, 2014.

[117] Michael Posa, Scott Kuindersma, and Russ Tedrake. Optimization and sta-
bilization of trajectories for constrained dynamical systems. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages 1366–
1373. IEEE, 2016.

[118] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versa-
tile monocular visual-inertial state estimator. IEEE Transactions on Robotics,
34(4):1004–1020, 2018.

[119] Tong Qin and Shaojie Shen. Online temporal calibration for monocular visual-
inertial systems. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3662–3669, 2018.

[120] Marc H. Raibert and Ernest R. Tello. Legged robots that balance. IEEE
Expert, 1(4):89–89, 1986.

[121] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa.
Chomp: Gradient optimization techniques for efficient motion planning. In
2009 IEEE International Conference on Robotics and Automation, pages 489–
494. IEEE, 2009.

[122] Andrzej Reinke, Marco Camurri, and Claudio Semini. A factor graph approach
to multi-camera extrinsic calibration on legged robots. In 2019 Third IEEE
International Conference on Robotic Computing (IRC), pages 391–394. IEEE,
2019.

[123] Michal Reinstein and Matej Hoffmann. Dead reckoning in a dynamic
quadruped robot: Inertial navigation system aided by a legged odometer. In
International Conference on Robotics and Automation, pages 617–624, 2011.

211

[124] Gerald P Roston and Eric P Krotkov. Dead Reckoning Navigation For Walking
Robots. Department of Computer Science, Carnegie-Mellon University, 1991.

[125] Nicholas Rotella, Michael Bloesch, Ludovic Righetti, and Stefan Schaal. State
estimation for a humanoid robot. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 952–958. IEEE, 2014.

[126] ZVIS Roth, B Mooring, and Bahram Ravani. An overview of robot calibration.
IEEE Journal on Robotics and Automation, 3(5):377–385, 1987.

[127] Robert T Savely. Apollo experience report: onboard navigational and align-
ment software. 1972.

[128] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial].
IEEE robotics & automation magazine, 18(4):80–92, 2011.

[129] Sangok Seok, Albert Wang, Meng Yee Chuah, David Otten, Jeffrey Lang, and
Sangbae Kim. Design principles for highly efficient quadrupeds and implemen-
tation on the mit cheetah robot. In International Conference on Robotics and
Automation, pages 3307–3312, 2013.

[130] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. Vision-
based state estimation and trajectory control towards high-speed flight with
a quadrotor. In Robotics: Science and Systems, volume 1, page 32. Citeseer,
2013.

[131] Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of
the 12th annual conference on Computer graphics and interactive techniques,
pages 245–254, 1985.

[132] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. Sliding window filter
with application to planetary landing. Journal of Field Robotics, 27(5):587–
608, 2010.

[133] Athanasios Sideris and Luis A Rodriguez. A Riccati approach for constrained
linear quadratic optimal control. International Journal of Control, 84(2):370–
380, 2011.

[134] Sarjoun Skaff, Alfred A Rizzi, Howie Choset, and Matthew Tesch. Context
identification for efficient multiple-model state estimation of systems with cycli-
cal intermittent dynamics. IEEE Transactions on Robotics, 27(1):14–28, 2010.

212

[135] Joan Sola. Quaternion kinematics for the error-state kalman filter. arXiv
preprint arXiv:1711.02508, 2017.

[136] Marius Stan. Euler, newton, and foundations for mechanics. 2017.

[137] Stanford Artificial Intelligence Laboratory et al. Robotic operating system.

[138] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an
operator splitting solver for quadratic programs. Mathematical Programming
Computation, 12(4):637–672, 2020.

[139] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang Liu, Yash
Mulgaonkar, Camillo J Taylor, and Vijay Kumar. Robust stereo visual inertial
odometry for fast autonomous flight. IEEE Robotics and Automation Letters,
3(2):965–972, 2018.

[140] Yu Sun, Wyatt L Ubellacker, Wen-Loong Ma, Xiang Zhang, Changhao
Wang, Noel V Csomay-Shanklin, Masayoshi Tomizuka, Koushil Sreenath,
and Aaron D Ames. Online learning of unknown dynamics for model-based
controllers in legged locomotion. IEEE Robotics and Automation Letters,
6(4):8442–8449, 2021.

[141] Duy-Nguyen Ta, Marin Kobilarov, and Frank Dellaert. A factor graph approach
to estimation and model predictive control on unmanned aerial vehicles. In
2014 International Conference on Unmanned Aircraft Systems (ICUAS), pages
181–188. IEEE, 2014.

[142] Yuval Tassa, Tom Erez, and William Smart. Receding horizon differential
dynamic programming. Advances in neural information processing systems,
20, 2007.

[143] Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential
dynamic programming. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 1168–1175. IEEE, 2014.

[144] James Taylor. The cramer-rao estimation error lower bound computation for
deterministic nonlinear systems. IEEE Transactions on Automatic Control,
24(2):343–344, 1979.

[145] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
MIT press, Cambridge, Mass., 2005.

213

[146] Marc Toussaint. Robot trajectory optimization using approximate inference. In
Proceedings of the 26th annual international conference on machine learning,
pages 1049–1056, 2009.

[147] Marco Tranzatto, Takahiro Miki, Mihir Dharmadhikari, Lukas Bernreiter, Mi-
hir Kulkarni, Frank Mascarich, Olov Andersson, Shehryar Khattak, Marco
Hutter, Roland Siegwart, et al. Cerberus in the darpa subterranean challenge.
Science Robotics, 7(66):eabp9742.

[148] Unitree. A1. https://www.unitree.com/products/a1/, 2021. [Online; ac-
cessed 10-Sep-2021].

[149] Vladyslav Usenko, Jakob Engel, Jörg Stückler, and Daniel Cremers. Direct
visual-inertial odometry with stereo cameras. In 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1885–1892. IEEE, 2016.

[150] Roberto G Valenti, Ivan Dryanovski, and Jizhong Xiao. Keeping a good at-
titude: A quaternion-based orientation filter for imus and margs. Sensors,
15(8):19302–19330, 2015.

[151] Giorgio Valsecchi, Ruben Grandia, and Marco Hutter. Quadrupedal locomo-
tion on uneven terrain with sensorized feet. IEEE Robotics and Automation
Letters, 5(2):1548–1555, 2020.

[152] Matthieu Vigne, Antonio El Khoury, Florent Di Meglio, and Nicolas Petit.
State estimation for a legged robot with multiple flexibilities using imu s: A
kinematic approach. IEEE Robotics and Automation Letters, 5(1):195–202,
2019.

[153] Matthieu Vigne, Antonio El Khoury, Marine Pétriaux, Florent Meglio, and
Nicolas Petit. Movie: a velocity-aided imu attitude estimator for observing
and controlling multiple deformations on legged robots. IEEE Robotics and
Automation Letters (RA-L), 2022.

[154] Yang Wang and Stephen Boyd. Fast model predictive control using online
optimization. IEEE Transactions on control systems technology, 18(2):267–
278, 2009.

[155] Joe Watson, Hany Abdulsamad, and Jan Peters. Stochastic optimal control as
approximate input inference. In Conference on Robot Learning, pages 697–716,
2020.

214

https://www.unitree.com/products/a1/

[156] Jan Wendel and Gert F Trommer. Tightly coupled gps/ins integration for
missile applications. Aerospace Science and Technology, 8(7):627–634, 2004.

[157] Patrick M Wensing, Albert Wang, Sangok Seok, David Otten, Jeffrey Lang,
and Sangbae Kim. Proprioceptive actuator design in the mit cheetah: Impact
mitigation and high-bandwidth physical interaction for dynamic legged robots.
Ieee transactions on robotics, 33(3):509–522, 2017.

[158] David Wisth, Marco Camurri, and Maurice Fallon. Robust legged robot state
estimation using factor graph optimization. IEEE Robotics and Automation
Letters, 4(4):4507–4514, 2019.

[159] David Wisth, Marco Camurri, and Maurice Fallon. Preintegrated velocity bias
estimation to overcome contact nonlinearities in legged robot odometry. In
2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 392–398. IEEE, 2020.

[160] David Wisth, Marco Camurri, and Maurice Fallon. Vilens: Visual, iner-
tial, lidar, and leg odometry for all-terrain legged robots. arXiv preprint
arXiv:2107.07243, 2021.

[161] David Wisth, Marco Camurri, and Maurice Fallon. Vilens: Visual, inertial,
lidar, and leg odometry for all-terrain legged robots. IEEE Transactions on
Robotics, 2022.

[162] X Xinjilefu, Siyuan Feng, and Christopher G Atkeson. A distributed mems gyro
network for joint velocity estimation. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 1879–1884. IEEE, 2016.

[163] Shuo Yang, Howie Choset, and Zachary Manchester. Online kinematic calibra-
tion for legged robots. IEEE Robotics and Automation Letters, 7(3):8178–8185,
2022.

[164] Shuo Yang, Zixin Zhang, Benjamin Bokser, and Zachary Manchester. Multi-
imu proprioceptive odometry for legged robots. In 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2023.

[165] Shuo Yang, Zixin Zhang, Zhengyu Fu, and Zachary Manchester. Cerberus:
Low-drift visual-inertial-leg odometry for agile locomotion. In 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE.

215

[166] Yanhao Yang, Joseph Norby, Justin K. Yim, and Aaron M. Johnson. Improving
tail compatibility through sequential distributed model predictive control. In
RSS Workshop on Software Tools for Real-Time Optimal Control, July 2021.

[167] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time.
In Robotics: Science and Systems, volume 2, 2014.

[168] Yanhao Zhang, Teng Zhang, and Shoudong Huang. Comparison of ekf based
slam and optimization based slam algorithms. In 2018 13th IEEE Conference
on Industrial Electronics and Applications (ICIEA), pages 1308–1313. IEEE,
2018.

216

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by
ProQuest LLC a part of Clarivate ().

Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway

Ann Arbor, MI 48108 USA

31558885

2024

	Introduction
	Motivation
	Thesis Statement
	Thesis Contributions & Overview

	Enhanced Model Predictive Control for Legged Robots With Reaction Wheels
	Introduction
	Related Work
	Model-based Control of Legged robots
	Legged Robot Balance Strategies
	Balancing Hardware

	Background
	Coordinate Frames & Rotation Representation
	Centroidal MPC
	Gyrostat Dynamics

	Hardware Design
	Gyrostat MPC
	Gyrostat Quadruped Dynamics
	MPC Problem
	Angular Momentum Error Feedback

	Experiments and Results
	Hardware/Simulation Setup
	Locomotion Disturbance Rejection
	Aerial Re-orientation
	Balance-Beam Walking

	Discussion

	Proprioceptive Odometry and Online Kinematic Calibration
	Introduction
	Related Work
	Legged Robot State Estimation
	Kinematics calibration

	Background
	Quaternion
	Quaternion Multiplicative Map
	Quaternion & Rotation Matrix
	Quaternion Exponential & Logarithm Maps
	Small Angle Exp & Lop Maps
	Quaternion Kinematics
	Rotation Matrix Exp & Log Map
	Rotation Kinematics
	IMU-driven Error-state Kalman Filter
	Leg Odometry Velocity
	Standard Single-IMU Proprioceptive Odometry

	Technical Approach
	Body Velocity Measurement Model
	Kalman Filter Kinematics Calibration
	Observability Analysis

	Experiments
	Simulation
	Error-state KF Hardware Experiment

	Conclusion & Future Work
	Appendix

	Cerberus: Low-Drift Visual-Inertial-Leg Odometry For Agile Locomotion
	Introduction
	Related Work
	Background
	An optimization view of state estimation
	Estimating Additional Parameters
	Visual-Inertial-Leg Odometry
	Preintegration

	Kinematic Calibration In Preintegration
	Contact Preintegration

	Experiments
	Parameter Estimation
	Indoor Experiments
	Outdoor Experiments
	Robust Estimation

	Conclusions
	Appendix
	Leg-IMU Factor Derivation
	Midpoint Method Discretize Dynamics
	Error dynamics equation
	Residual Jacobian

	Multi-IMU Proprioceptive Odometry
	Introduction
	Related Work
	Background
	Implicit Measurement Model & Quaternion Measurement

	Technical Approach
	EKF Process Model
	The Pivoting Contact Model
	EKF Measurement Model
	Foot Contact and Slip Detection
	Analytical Jacobian
	Observability Analysis
	Cramér-Rao Lower Bound

	Experiments
	Sensor Hardware Design
	Position Estimation Evaluation
	Multi-IMU PO Orientation Estimation
	Ablation Study

	Conclusion
	Appendix
	Measurement Jacobian Terms

	Multi-IMU Visual-Inertial-Leg Odometry
	Cerberus 2.0
	Software Architecture
	Loosely Coupled Leg Residual
	Tightly Coupled Leg Residual

	Implementation & Experiments
	Sensor Hardware
	Evaluation Metrics
	Cerberus 2.0 Evaluation

	Limitation & Future Work
	Conclusions

	Equality Constrained LQR With The Factor Graph
	Motivation
	Related Work
	Preliminary
	Problem And Method
	Problem Formulation
	EC-LQR with Local Constraints
	Computational Complexity Analysis
	EC-LQR with Cross-time-step Constraints

	Experiments
	Cost, Constraint Violation & Controller Comparison
	Run Time Comparison
	Cross-time-step Constraints

	Future Work
	Conclusions
	Appendix

	Conclusion & Future Work
	Legged Control
	Legged Estimation
	Legged System Hardware Development
	Legged System Software Development
	Data Driven Methods

